
CS206 Lec05

CS206

Linked List

!1

CS206 Lec05

Reference
• A reference variable holds a memory address

where the referenced object is stored
• They are usually just call “Objects”

• Reference types
▫ Anything that inherits from Object (including String,
Integer, Double, etc)

▫ “primitive” types: int, float, etc are NOT reference
types
▫ recognizable by starting lower case

• A reference is null when it doesn’t refer/point to
any object

!2

CS206 Lec05

References and equality

!3

 String s1 = new String("abc");
 String s2 = new String("abc");
 String s3 = s2;
 String s4 = "abc";
 String s5 = "abc";

 System.out.println("1 equal 2 " + s1.equals(s2));
 System.out.println("1==2 " + (s1==s2));
 System.out.println("2==3 " + (s2==s3));
 System.out.println("4==5 " + (s4==s5));
 System.out.println("1==4 " + (s1==s4));

CS206 Lec05

Nested Class
• A class defined inside the definition of another class
• Used when defining a class that is strongly affiliated with

another
▫ Increases encapsulation and reduces undesired name conflicts.

• Nested classes are a valuable technique when
implementing data structures
▫ represent a small portion of a larger data structure
▫ an auxiliary class that helps navigate a primary data structure

▫ Usually private to containing class
▫ Only occasion in which pubic instance variables are acceptable

▫ and only when the class is strictly a data container — nothing
but get & set.

!4

CS206 Lec05

Linked List

• A linked list is a lists of objects (nodes).
• The nodes form a linear sequence.
• Unbounded in length.

!5

A B C D

∅

head tail

CS206 Lec05

Linked List versus Array

• An array is a single consecutive piece of
memory, a linked list is made of many
disjoint pieces (the nodes).

!6

CS206 Lec05

Linked List versus Array

• Array
▫ quick access to any element
▫ slow insertion, deletion and reordering

(shifting required in general)

• Linked list
▫ quick insertion, deletion and reordering of

the elements
▫ slow access (must traverse list)

!7

CS206 Lec05

Self-referential Structures

• A class with instance
variables that reference
another member of the class

!8

next

data Node

public class Node {

 private Object data;

 private Node next;

}

CS206

Rabbits

!9

You want to store data about a herd of rabbits.
Each rabbit has a breed and birthdate (stored as double) and ID.
Rabbits come and go frequently but you do not need to
update rabbit data often

Rabbit breeds: french lop, dwarf dutch, angora, …

public class Rabbit {
 private String breed;
 private double birthdate;
 private String iD;

 public Rabbit(String breed, double bday, String id) {

 this.breed=breed;
 this.birthdate=bday;
 this.iD=id;
 }

 private Rabbit() {
 }
// Other stuff
}

CS206 Lec05

Node
private class Node {
 public Rabbit data;
 public Node next;
 public Node(Rabbit data, Node next) {
 this.data = data;
 this.next = next;
 }
}

!10

CS206 Lec05

A Rabbity Linked List interface

!11

public interface LinkedListInterface
{
 int size();
 boolean isEmpty();
 Rabbit first();
 Rabbit last();
 void addLast(Rabbit c);
 void addFirst(Rabbit c);
 Rabbit removeFirst();
 Rabbit removeLast();
 Rabbit remove(Rabbit r);
 Rabbit find(String iD);
}

No mention of nodes!!

CS206

Starting Point

!12

public class LinkedListOfRabbits
 implements LinkedListInterface
{
 private class Node
 {
 public Rabbit data;

 public Node next;
 public Node(Rabbit data, Node next)
 {
 this.data = data;
 this.next = next;
 }
 }
 private Node head = null;
 private Node tail = null;
 private int size = 0;
}

CS206 Lec05

Print a Linked List

!13

public String toString() {
 StringBuffer s = new StringBuffer();
 for (Node n=head; n!=null; n=n.getNext())
 {
 s.append(n.data.toString());
 if (n != tail)
 {
 s.append("\n");
 }
 }
 return s.toString();
}

CS206 Lec05

Inserting at the Head
1. create a

new node
2. have new

node point
to old head

3. update
head to
point to
new node

!14

CS206 Lec05

Inserting at the Tail
1. create a

new node
2. Have new

node point
to null

3. have old
last node
point to
new node

4. update tail
to point to
new node

!15

CS206 Lec05

Insertion

!16
Why not take a Node?

 public void addLast(Rabbit c)
 {
 Node newest = new Node(c, null);
 if (isEmpty())
 { head = newest;}
 else
 {
 tail.next=newest;
 }
 tail = newest;
 size++;
 }

write addFirst

CS206 Lec05

Removing at the Head
1. update

head to
point to
next node in
the list

2. allow
garbage
collector to
reclaim the
former first
node

!17

CS206 Lec05

Deletion

!18

 public Rabbit removeFirst()
 {

 if (isEmpty()) {return null;}
 Rabbit target = head.data;
 head = head.next;
 size--;
 if (isEmpty()) {tail = null;}
 return target;

 }

CS206 Lec06

Find

!19

 public Rabbit find(String id)
 {

 Node curr = head;
 while (curr!=null)
 {
 if (curr.data.getId().equals(id))
 {

 return curr.data;
 }
 curr=curr.next;
 }
 return null;

 }

