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Reference
• A reference variable holds a memory address 

where the referenced object is stored 
• They are usually just call “Objects” 

• Reference types 
▫ Anything that inherits from Object (including String, 
Integer, Double, etc) 

▫ “primitive” types: int, float, etc are NOT reference 
types 
▫ recognizable by starting lower case 

• A reference is null when it doesn’t refer/point to 
any object 
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References and equality
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 String s1 = new String("abc"); 
 String s2 = new String("abc"); 
 String s3 = s2; 
 String s4 = "abc"; 
 String s5 = "abc"; 
  
 System.out.println("1 equal 2 " + s1.equals(s2)); 
 System.out.println("1==2 " + (s1==s2)); 
 System.out.println("2==3 " + (s2==s3)); 
 System.out.println("4==5 " + (s4==s5)); 
 System.out.println("1==4 " + (s1==s4)); 
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Nested Class
• A class defined inside the definition of another class 
• Used when defining a class that is strongly affiliated with 

another 
▫ Increases encapsulation and reduces undesired name conflicts.  

• Nested classes are a valuable technique when 
implementing data structures 
▫ represent a small portion of a larger data structure 
▫ an auxiliary class that helps navigate a primary data structure 

▫ Usually private to containing class 
▫ Only occasion in which pubic instance variables are acceptable 

▫ and only when the class is strictly a data container — nothing 
but get & set.
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Linked List

• A linked list is a lists of objects (nodes). 
• The nodes form a linear sequence. 
• Unbounded in length. 
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Linked List versus Array

• An array is a single consecutive piece of 
memory, a linked list is made of many 
disjoint pieces (the nodes).
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Linked List versus Array

• Array 
▫ quick access to any element 
▫ slow insertion, deletion and reordering 

(shifting required in general) 

• Linked list  
▫ quick insertion, deletion and reordering of 

the elements 
▫ slow access (must traverse list)

!7



CS206 Lec05

Self-referential Structures

• A class with instance 
variables that reference 
another member of the class
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next

data Node

public class Node { 

  private Object data; 

  private Node next; 

}
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Rabbits

!9

You want to store data about a herd of rabbits.   
Each rabbit has a breed and birthdate (stored as double) and ID. 
Rabbits come and go frequently but you do not need to 
update rabbit data often

Rabbit breeds: french lop, dwarf dutch, angora, … 

public class Rabbit { 
    private String breed; 
    private double birthdate; 
    private String iD; 
     
    public Rabbit(String breed, double bday, String id) { 

     this.breed=breed; 
     this.birthdate=bday; 
    this.iD=id; 
    } 

    private Rabbit()  { 
    } 
// Other stuff 
} 
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Node
private class Node { 
  public Rabbit data; 
  public Node next; 
  public Node(Rabbit data, Node next) { 
    this.data = data; 
    this.next = next; 
  } 
}
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A Rabbity Linked List interface
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public interface LinkedListInterface 
{ 
    int size(); 
    boolean isEmpty(); 
    Rabbit first(); 
    Rabbit last(); 
    void addLast(Rabbit c); 
    void addFirst(Rabbit c); 
    Rabbit removeFirst(); 
    Rabbit removeLast(); 
    Rabbit remove(Rabbit r); 
    Rabbit find(String iD); 
} 

No mention of nodes!!
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Starting Point
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public class LinkedListOfRabbits  
       implements LinkedListInterface 
{ 
    private class Node  
    { 
     public Rabbit data; 

     public Node next; 
     public Node(Rabbit data, Node next)  
     { 
        this.data = data; 
        this.next = next; 
     }  
    }    
    private Node head = null; 
    private Node tail = null; 
    private int size = 0; 
}
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Print a Linked List
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public String toString() { 
 StringBuffer s = new StringBuffer(); 
 for (Node n=head; n!=null; n=n.getNext()) 
 { 
     s.append( n.data.toString()); 
     if (n != tail)  
     { 
         s.append("\n"); 
     } 
 } 
 return s.toString(); 
} 
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Inserting at the Head
1. create a 

new node 
2. have new 

node point 
to old head 

3. update 
head to 
point to 
new node
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Inserting at the Tail
1. create a 

new node 
2. Have new 

node point 
to null 

3. have old 
last node 
point to 
new node 

4. update tail 
to point to 
new node
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Insertion
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Why not take a Node?

  public void addLast(Rabbit c)  
  { 
    Node newest = new Node(c, null); 
    if (isEmpty())  
     { head = newest;} 
    else  
    { 
       tail.next=newest; 
    } 
    tail = newest;  
    size++;   
    } 

write addFirst
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Removing at the Head
1. update 

head to 
point to 
next node in 
the list 

2. allow 
garbage 
collector to 
reclaim the 
former first 
node
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Deletion
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  public Rabbit removeFirst()  
  { 

 if (isEmpty()) {return null;} 
 Rabbit target = head.data; 
 head = head.next;  
 size--; 
 if (isEmpty()) {tail = null;} 
 return target; 

  } 



CS206 Lec06

Find
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  public Rabbit find(String id) 
  { 

 Node curr = head; 
 while (curr!=null) 
 { 
     if (curr.data.getId().equals(id)) 
     { 

  return curr.data; 
     } 
       curr=curr.next; 
 } 
 return null; 

  } 


