
CS206 Lec01

CS206 Intro to Data Structures

Java Basics

!1

CS206 Lec01

Administrivia
• Course website
▫ www.cs.brynmawr.edu/cs206
▫ Homeworks
▫ Approximately weekly.
▫ Typically due on Thursday before midnight
▫ Help in lab Sunday-Thursday evenings
▫ starting next week

▫ Syllabus
▫ Subject to change

!2

CS206 Lec01

More Administrivia

• CS account
▫ If you do not have a cs account, sign up sheet
▫ If you do, make sure you can log in

• Lab: Park 231/TH 2:25pm-3:45pm
• Lab attendance is required.

• Complete labs before starting
assignments

• Software: Java and Eclipse

!3

CS206

What is a Data Structure?

!4

CS206 Lec01

An Example Program

!5

CS206 Lec01

Components of a Java Program

• Name of main class and file must agree
▫ class Main <--> Main.java

▫ Statements are placed in methods, that
belong to class definitions.

• The static method named main is the
first method to be executed when running
a Java program.

• Any set of statements between the braces
{ and } define a program block.

!6

CS206 Lec01

Base/Primitive Types

• Variables must have types
• Primitive types define memory used to

store the data

!7

CS206

2s complement integers

!8

Value Binary Complement 2s
Complement

0 000 111 000
1 001 100 111
2 010 101 110
3 011 100 101

-4 100 011 100
-3 101 010 011
-2 110 001 010
-1 111 000 001

the 2s complement of an N-bit number is defined as its complement with respect to 2N. For
instance, for the three-bit number 010, the two's complement is 110, because 010 + 110 = 1000.
The two's complement is calculated by inverting the digits and adding one

Notes: leftmost bit is for sign in “Binary” column

CS206 Lec01

Classes and Objects

• Every object is an instance of a class
• A class is a blueprint of what an object

stores and how it functions
▫ instance variables
▫ methods

• Every variable is either a base type or a
reference to an object

!9

CS206 Lec01

Creating and Using Objects

• In Java, a new object is created by
using the new operator followed by a
call to a constructor for the desired
class.

• A constructor is a method that always
shares the same name as its class. The
new operator returns a reference to the
newly created instance.

• Almost everything in Java is a class
!10

CS206 Lec01

Class Example

• instance variable
• methods

▫ constructor
▫ accessor

!11

CS206 Lec01

Continued Example

!12

public static void main(String[] args)
{

Counter c;
c = new Counter();
c.increment();
c.increment();
System.out.println(c.getCount());
c.reset();
Counter d = new Counter(5);
d.increment();
Counter e = d;
e.increment();
System.out.println(c.getCount() + “ “ + d.getCount() + “ “ +
e.getCount());

}

CS206 Lec01

Access Control Modifiers

• public designates that all classes may
access

• private designates that access is
granted only to code within that class.

• “” only classes within the package can
access (I hate significant whitespace)
• The package is generally the code you

are working on.
• e.g., System.out is a package

!13

CS206

Static
• When a variable or method of a class is declared as
static, it is associated with the class as a whole,
rather than with each individual instance of that
class.

• HH & HW example

• final
• Variable

• paired with static: set in class
• not static: set in class or in every constructor

• Method
• Cannot be modified in subclasses

!14

CS206 Lec01

javadoc comments

• Comments
▫ /* */
▫ //

• A style/format of commenting for auto-
generation of documentation in html
/**

 */

▫ used for method headers and classes

!15

CS206 Lec01

Example
/**

 * returns the sum of two integers

 * @param x The first integer

 * @param y The second integer

 * @return int The sum of x+y

 */

int sum(int x, int y)

!16

CS206 Lec01

Casting

• Assignment
REQUIRES equal
type

• Cast to change type

int x = 5;
double y = 1.2;
y = x;
x = y;
y = (double) x;
x = (int) y;
y = (double) x;

!17

CS206 Lec01

Implicit/Explicit Casting

• Widening cast – from a smaller/narrower
type to a larger/wider - upcast

• Narrowing cast – the other way -
downcast

• Java will perform an implicit cast when a
widening is required, but not a narrowing

• Narrowing cast must be explicit

!18

