
11/16/2017

1

TREES

Chapter 6

Trees - Introduction

 All previous data organizations we've studied are

linear—each element can have only one

predecessor and successor

 Accessing all elements in a linear sequence is O(n)

 Trees are nonlinear and hierarchical

 Tree nodes can have multiple successors (but only

one predecessor)

11/16/2017

2

Section 6.1

Tree Terminology and Applications

Tree Terminology (cont.)

dog

cat wolf

canine

A tree consists of a collection of elements or nodes,
with each node linked to its successors

A subtree of a node is

a tree whose root is a

child of that node

Node, Link

Root

Branches

Successors, Children

Predecessors, Parent

Siblings

Leaf Node

Subtree

11/16/2017

3

Tree Terminology (cont.)

dog

cat wolf

canine

A tree consists of a collection of elements or nodes,
with each node linked to its successors

The level of a node is

its distance from the

root plus 1

Level 1

Level 2

Level 3

Tree Terminology (cont.)

dog

cat wolf

canine

A tree consists of a collection of elements or nodes,
with each node linked to its successors

The level of a node is

defined recursively

Level 1

Level 2

Level 3

• If node n is the root of tree T, its level is 1

• If node n is not the root of tree T, its level is

1 + the level of its parent

11/16/2017

4

Tree Terminology (cont.)

dog

cat wolf

canine

A tree consists of a collection of elements or nodes,
with each node linked to its successors

The height of a tree

is the number of

nodes in the longest

path from the root

node to a leaf node

Node, Link

Root

Branches

Successors, Children

Predecessors, Parent

Siblings

Leaf Node

Subtree

Level

Height

Tree Terminology (cont.)

dog

cat wolf

canine

A tree consists of a collection of elements or nodes,
with each node linked to its successors

The height of a tree

is the number of

nodes in the longest

path from the root

node to a leaf node
The height of this

tree is 3

11/16/2017

5

Common Types of Trees

 Binary Tree

 Expression Trees

 Huffman Trees

 Binary Search Trees

 Many many more!

Binary Trees

 In a binary tree, each node has two subtrees

 A set of nodes T is a binary tree if either of the

following is true

 T is empty

 Its root node has two subtrees, TL and TR, such that TL

and TR are binary trees

(TL = left subtree; TR = right subtree)

11/16/2017

6

Full, Perfect, and Complete Binary

Trees

 A full binary tree is a

binary tree where all

nodes have either 2

children or 0 children

(the leaf nodes)

7

101

12930

52 11

64

13

Node, Link

Root

Branches

Successors, Children

Predecessors, Parent

Siblings

Leaf Node

Subtree

Binary Tree

Binary Search Tree

Full Binary Tree

Full, Perfect, and Complete Binary

Trees (cont.)

 A perfect binary tree is a

full binary tree of height

n with exactly

2n – 1 nodes

 In this case, n = 3

and 2n – 1 = 7

3

1

420

5

6

Node, Link

Root

Branches

Successors, Children

Predecessors, Parent

Siblings

Leaf Node

Subtree

Binary Tree

Binary Search Tree

Full Binary Tree

Perfect Binary Tree

11/16/2017

7

Full, Perfect, and Complete Binary

Trees (cont.)

 A complete binary tree is

a perfect binary tree

through level n - 1 with

some extra leaf nodes at

level n (the tree height),

all toward the left

3

1

420

5

Node, Link

Root

Branches

Successors, Children

Predecessors, Parent

Siblings

Leaf Node

Subtree

Binary Tree

Binary Search Tree

Full Binary Tree

Perfect Binary Tree

Complete Binary Tree

Expression Tree

 Each node contains an
operator or an operand

 Operands are stored in
leaf nodes

 Parentheses are not stored
in the tree because the tree structure dictates the
order of operand evaluation

 Operators in nodes at higher tree levels are
evaluated after operators in nodes at lower tree
levels

(x + y) * ((a + b) / c)

11/16/2017

8

Binary Search Tree

 Binary search trees
 All elements in the left subtree

precede those in the right subtree

 A formal definition:

A set of nodes T is a binary
search tree if either of the following is true:

 T is empty

 If T is not empty, its root node has two subtrees, TL and TR,
such that TL and TR are binary search trees and the value in
the root node of T is greater than all values in TL and is less
than all values in TR

dog

cat wolf

canine

Binary Search Tree (cont.)

 A binary search tree never has to be sorted

because its elements always satisfy the required

order relationships

 When new elements are inserted (or removed)

properly, the binary search tree maintains its order

 In contrast, a sorted array must be expanded

whenever new elements are added, and compacted

whenever elements are removed—expanding and

contracting are both O(n)

11/16/2017

9

Binary Search Tree (cont.)

 When searching a BST, each probe has the

potential to eliminate half the elements in the tree,

so searching can be O(log n)

 In the worst case, searching is O(n)

Recursive Algorithm for Searching a

Binary Tree

1. if the tree is empty

2. return null (target is not found)

else if the target matches the root node's data

3. return the data stored at the root node

else if the target is less than the root node's data

4. return the result of searching the left subtree of the root

else

5. return the result of searching the right subtree of the root

11/16/2017

10

Section 6.2

Tree Traversals

Tree Traversals

 Often we want to determine the nodes of a tree
and their relationship

 We can do this by walking through the tree in a
prescribed order and visiting the nodes as they are
encountered

 This process is called tree traversal

 Three common kinds of tree traversal

 Inorder

 Preorder

 Postorder

11/16/2017

11

Tree Traversals (cont.)

 Preorder: visit root node, traverse TL, traverse TR

 Inorder: traverse TL, visit root node, traverse TR

 Postorder: traverse TL, traverse TR, visit root node

Visualizing Tree Traversals

b

ed

g h ji

f

c

a

a b d g e h c f i j

11/16/2017

12

Visualizing Tree Traversals

b

ed

g h ji

f

c

a

d g b h e a i f j c

Visualizing Tree Traversals

b

ed

g h ji

f

c

a

g d h e b i j f c a

11/16/2017

13

Tree Traversals (cont.)

 Preorder: visit root node, traverse TL, traverse TR

 Inorder: traverse TL, visit root node, traverse TR

 Postorder: traverse TL, traverse TR, visit root node

Traversals of Binary Search Trees

and Expression Trees

 An inorder traversal of a

binary search tree results

in the nodes being visited

in sequence by

increasing data value

canine, cat, dog, wolf

dog

cat wolf

canine

11/16/2017

14

Traversals of Binary Search Trees and

Expression Trees (cont.)

 An inorder traversal of an

expression tree results in the

sequence

x + y * a + b / c

 If we insert parentheses where

they belong, we get the infix

form:

(x + y) * ((a + b) / c)

*

/+

c+yx

ba

Traversals of Binary Search Trees and

Expression Trees (cont.)

 A postorder traversal of an

expression tree results in the

sequence

x y + a b + c / *

 This is the postfix or reverse

polish form of the expression

 Operators follow operands

*

/+

c+yx

ba

11/16/2017

15

Traversals of Binary Search Trees and

Expression Trees (cont.)

 A preorder traversal of an

expression tree results in the

sequence

* + x y / + a b c

 This is the prefix or forward polish

form of the expression

 Operators precede operands

*

/+

c+yx

ba

