
10/26/2017

1

CHAPTER 3 & 4

Stacks & Queues

The Collection Framework

10/26/2017

2

Stack Abstract Data Type

 A stack is one of the most commonly used

data structures in computer science

 A stack can be compared to a Pez

dispenser

 Only the top item can be accessed

 You can extract only one item at a time

 The top element in the stack is the last

added to the stack (most recently)

 The stack’s storage policy is Last-In, First-

Out, or LIFO

Java Collections: Stack

 The Java API includes a Stack
class as part of the package
java.util :

Stack<String> myStringStack = new Stack<String>();
Stack<Place> myPlacesStack = new Stack<Places>();

myStringStack.push(“Deepak”);

myPlacesStack.push(new Place(“19010”, “Bryn Mawr”, “PA”));

etc.

10/26/2017

3

Specification of the Stack Abstract

Data Type

 Only the top element of a stack is visible; therefore the number of
operations performed by a stack are few

 We need the ability to

 test for an empty stack (empty)

 inspect the top element (peek)

 retrieve the top element (pop)

 put a new element on the stack (push)

A Stack of Strings

 “Rich” is the oldest element on the stack and “Jonathan” is
the youngest (Figure a)

 String last = names.peek(); stores a reference
to “Jonathan” in last

 String temp = names.pop(); removes “Jonathan”
and stores a reference to it in temp (Figure b)

 names.push(“Philip”); pushes “Philip” onto the
stack (Figure c)

10/26/2017

4

Other examples of stacks

 Back button in browser

 Palindrome checker

Go hang a salami, I’m a lasagna hog!

 Matching parentheses

 Expression evaluation

 printStackTrace()

7

Queue

 The queue, like the stack, is a widely used data

structure

 A queue differs from a stack in one important way

 A stack is LIFO list – Last-In, First-Out

 while a queue is FIFO list, First-In, First-Out

10/26/2017

5

Queue Abstract Data Type

 A queue can be visualized as a line of customers waiting for
service

 The next person to be served is the one who has waited the
longest

 New elements are placed at the end of the line

Print Queue

 Operating systems use queues to

 keep track of tasks waiting for a scarce resource

 ensure that the tasks are carried out in the order they were
generated

 Print queue: printing is much slower than the process of
selecting pages to print, so a queue is used

10/26/2017

6

Specification for a Queue Interface

 The Queue interface implements the Collection interface

(and therefore the Iterable interface), so a full

implementation of Queue must implement all required

methods of Collection (and the Iterable interface)

Class LinkedList Implements the

Queue Interface

 The LinkedList class provides methods for inserting and
removing elements at either end of a double-linked list,
which means all Queue methods can be implemented easily

 The Java 5.0 LinkedList class implements the Queue interface

Queue<String> names = new LinkedList<String>();

 creates a new Queue reference, names, that stores references to
String objects

 The actual object referenced by names is of type
LinkedList<String>, but because names is a type
Queue<String> reference, you can apply only the Queue methods
to it

10/26/2017

7

The Collection Framework

Java Collections: Queue

 The Java API includes a Queue
interface as part of the package
java.util :

Queue<String> myStringQueue = new LinkedList<String>();
Queue<Place> myPlacesQueue = new LinkedList<Places>();

myStringQueue.offer(“Deepak”);

myPlacesQueue.offer(new Place(“19010”, “Bryn Mawr”, “PA”));

etc.

10/26/2017

8

Examples of Queues

 Simulations of real life situations: Service Queues

 Scheduling processes in Operating Systems

 Keep track of state in systematic searches

15

Stacks & Queues

java.util.Stack<E>

boolean empty()

E peek()

E pop()

 Both raise

EmptyStackException

E push(e)

+ all List<E> operations

java.util.Queue<E>

boolean add(e)

boolean offer(e)

E remove()

E poll()

E peek()

E element()

- Return T/F/null

 Raise

NoSuchElementException

16

10/26/2017

9

Section 3.2

Stack Applications

Finding Palindromes

 Palindrome: a string that reads identically in either

direction, letter by letter (ignoring case)

 kayak

 "I saw I was I"

 “Able was I ere I saw Elba”

 "Level madam level"

 Problem: Write a program that reads a string and

determines whether it is a palindrome

10/26/2017

10

Finding Palindromes (cont.)

Finding Palindromes (cont.)

import java.util.*;

public class PalindromeFinder {

private String inputString;

private Stack<Character> charStack = new

Stack<Character>();

public PalindromeFinder(String str) {

inputString = str;

fillStack(); // fills the stack with the characters in

inputString

}

...

10/26/2017

11

Finding Palindromes (cont.)

 Solving using a stack:

 Push each string character, from left to right, onto a

stack

ka

k

y

ka

ka

a

ay
a y a kk

k

y

a

k
a y a kk

private void fillStack() {

for(int i = 0; i < inputString.length(); i++) {

charStack.push(inputString.charAt(i));

}

}

kaykaykaa

Finding Palindromes (cont.)

 Solving using a stack:

 Pop each character off the stack, appending each to

the StringBuilder result

k

k

a

a

k

y

a

k

y

a

ka y ak

k

private String buildReverse(){

StringBuilder result = new StringBuilder();

while(!charStack.empty()) {

result.append(charStack.pop());

}

return result.toString();

}

10/26/2017

12

Finding Palindromes (cont.)

...

public boolean isPalindrome() {

return inputString.equalsIgnoreCase(buildReverse());

}

}

Discrete Event Simulation

Queue Applications

10/26/2017

13

Discrete Event Simulation

 Single Queue, single server

 Single Queue, multiple servers

 Multiple Queue, multiple servers

25

Rear Front

Rear Front

Rear Front

Rear Front

…

… …

Example: Single Queue, Single

Server

 Arrival process

 How customers arrive: What is inter-arrival time?

E.g. between 1-3 min

 Service mechanism: How long will service take?

E.g. 0.5 to 2.0 min

 Queue characteristics: FIFO

26

Rear

Front

10/26/2017

14

Example Data

Customer Inter-arrival Time Service Time (min)

C1 1.9 1.7

C2 1.3 1.8

C3 1.1 1.5

C4 1.0 0.9

27

T Arrival Queue Server Depart

0 [] Idle

1.9 C1 [] C1

3.2 C2 [C2] C1

3.6 [] C2 C1

4.3 C3 [C3] C2

5.3 C4 [C4, C3] C2

5.4 [C4] C3 C2

6.9 [] C4 C2

7.8 [] C4

Queue Simulation

Application: Lab Printer Simulation

 There is one printer in the Computer Science Lab

 At any given time, there may be as many as 10

students working in the lab

 Each student may print upto twice in an hour

 Print jobs are 1-20 pages long

 ∴ There are up to 20 print jobs in an hour

 Question: What is the chance that in any given

second there will be a print job scheduled?

28

10/26/2017

15

Application: Lab Printer Simulation

 There is one printer in the Computer Science Lab

 At any given time, there may be as many as 10

students working in the lab

 Each student may print upto twice in an hour

 Print jobs are 1-20 pages long

 ∴ There are up to 20 print jobs in an hour

 Question: What is the chance that in any given

second there will be a print job scheduled?

29

Application: Lab Printer Simulation

 There is one printer in the CS Lab (10 ppm)

 At any given time, there may be as many as 10

students working in the lab

 Each student may print upto twice in an hour

 Print jobs are 1-20 pages long

 ∴ There are up to 20 print jobs in an hour

 Question: What will the average wait time be for

students to receive their printouts?

 Question: What would the average wait time be if

the printer were upgraded to 20 ppp?

30

10/26/2017

16

Section 3.3

Implementing a Stack

Java Collections: Stack

 The Java API includes a Stack
class as part of the package
java.util :

Stack<String> myStringStack = new Stack<String>();
Stack<Place> myPlacesStack = new Stack<Places>();

myStringStack.push(“Deepak”);

myPlacesStack.push(new Place(“19010”, “Bryn Mawr”, “PA”));

etc.

10/26/2017

17

Implementing a Stack with a List

Component
 We can write a class, ListStack, that has a List component (in the

example below, theData)

 We can use either the ArrayList, or the LinkedList classes, as all
implement the List interface. The push method, for example, can be
coded as

public E push(E obj) {

theData.add(obj);

return obj;

}

 A class which adapts methods of another class by giving different names to
essentially the same methods (push instead of add) is called an adapter
class

 Writing methods in this way is called method delegation

Implementing a Stack Using an Array

 If we implement a stack as an array,
we would need . . .

public class ArrayStack<E> implements StackInt<E> {

private E[] theData;

int topOfStack = -1;

private static final int INITIAL_CAPACITY = 10;

public ArrayStack() {

theData = (E[])new Object[INITIAL_CAPACITY];

} // ArrayStack()

Allocate storage for an

array with a default

capacity

Keep track of the top of the

stack (subscript of the element

at the top of the stack; for

empty stack = -1)

There is no size variable or method

10/26/2017

18

Implementing a Stack Using an Array

(cont.)

ArrayStack

theData =

topOfStack = -1

Object[]

[0] = null

[1] = null

[2] = null

[3] = null

[4] = null

[5] = null

[6] = null

[7] = null

[8] = null

[9] = null

public E push(E obj) {

if (topOfStack == theData.length - 1){

reallocate();

}

topOfStack++;

theData[topOfStack] = obj;

return obj;

}

0

Character

value = 'J'

1

Character

value = 'a'

Character

value = 'v'

2

Character

value = 'a'

3

Implementing a Stack Using an Array

(cont.)

public E pop() {

if (empty()) {

throw new EmptyStackException();

}

return theData[topOfStack--];

} // pop()

10/26/2017

19

Implementing a Stack using an array
37

import java.util.EmptyStackException;

public class ArrayStack<E> implements StackInt<E> {

E[] theData;

int topOfStack = -1; // Initially empty stack.

private static final int INITIAL_CAPACITY = 10;

public ArrayStack() {

theData = (E[]) new Object[INITIAL_CAPACITY];

} // ArrayStack()

public E push(E obj) {

if (topOfStack == theData.length - 1) {

reallocate();

}

topOfStack++;

theData[topOfStack] = obj;

return obj;

} // push()

public E pop() {

if (empty()) {

throw new EmptyStackException();

}

return theData[topOfStack--];

} // pop()

} // class ArrayStack<E>

Implementing a Stack as a Linked

Data Structure

 We can also implement a stack using a linked list of

nodes

It is easiest to insert and

delete from the head of a list

push inserts a node at the

head and pop deletes the

node at the head

when the list is empty, pop

returns null

10/26/2017

20

Implementing a Stack as a Linked

Data Structure (cont.)
39

 Listing 3.5 (LinkedStack.java, pages 168 - 169)

Comparison of Stack

Implementations

 The easiest implementation uses a List component
(ArrayList is the simplest) for storing data

 An underlying array requires reallocation of space
when the array becomes full, and

 an underlying linked data structure requires allocating
storage for links

 As all insertions and deletions occur at one end, they
are constant time, O(1), regardless of the type of
implementation used

10/26/2017

21

Section 3.4

Additional Stack Applications

Additional Stack Applications

 Postfix and infix notation

 Expressions normally are written in infix form, but

 it easier to evaluate an expression in postfix form since
there is no need to group sub-expressions in parentheses
or worry about operator precedence

10/26/2017

22

Evaluating Postfix Expressions

 Write a class that evaluates a postfix expression

 Use the space character as a delimiter between

tokens

Evaluating Postfix Expressions (cont.)

1. create an empty stack of integers

2. while there are more tokens

3. get the next token

4. if the first character of the token is a digit

5. push the token on the stack

6. else if the token is an operator

7. pop the right operand off the stack

8. pop the left operand off the stack

9. evaluate the operation

10. push the result onto the stack

11. pop the stack and return the result

7 -20*

4

44

10/26/2017

23

Evaluating Postfix Expressions (cont.)

1. create an empty stack of integers

2. while there are more tokens

3. get the next token

4. if the first character of the token is a digit

5. push the token on the stack

6. else if the token is an operator

7. pop the right operand off the stack

8. pop the left operand off the stack

9. evaluate the operation

10. push the result onto the stack

11. pop the stack and return the result

7 -20*

4

44 7

7

4

Evaluating Postfix Expressions (cont.)

1. create an empty stack of integers

2. while there are more tokens

3. get the next token

4. if the first character of the token is a digit

5. push the token on the stack

6. else if the token is an operator

7. pop the right operand off the stack

8. pop the left operand off the stack

9. evaluate the operation

10. push the result onto the stack

11. pop the stack and return the result

7 -20*44 7

7

4

4 * 7

10/26/2017

24

Evaluating Postfix Expressions (cont.)

1. create an empty stack of integers

2. while there are more tokens

3. get the next token

4. if the first character of the token is a digit

5. push the token on the stack

6. else if the token is an operator

7. pop the right operand off the stack

8. pop the left operand off the stack

9. evaluate the operation

10. push the result onto the stack

11. pop the stack and return the result

7 -20*44 728

28

Evaluating Postfix Expressions (cont.)

1. create an empty stack of integers

2. while there are more tokens

3. get the next token

4. if the first character of the token is a digit

5. push the token on the stack

6. else if the token is an operator

7. pop the right operand off the stack

8. pop the left operand off the stack

9. evaluate the operation

10. push the result onto the stack

11. pop the stack and return the result

7 -20*44 7

28

20

20

28

10/26/2017

25

Evaluating Postfix Expressions (cont.)

1. create an empty stack of integers

2. while there are more tokens

3. get the next token

4. if the first character of the token is a digit

5. push the token on the stack

6. else if the token is an operator

7. pop the right operand off the stack

8. pop the left operand off the stack

9. evaluate the operation

10. push the result onto the stack

11. pop the stack and return the result

7 -20*44 7

20

28

28 - 20

Evaluating Postfix Expressions (cont.)

1. create an empty stack of integers

2. while there are more tokens

3. get the next token

4. if the first character of the token is a digit

5. push the token on the stack

6. else if the token is an operator

7. pop the right operand off the stack

8. pop the left operand off the stack

9. evaluate the operation

10. push the result onto the stack

11. pop the stack and return the result

7 -20*44 78

8

10/26/2017

26

Evaluating Postfix Expressions (cont.)

1. create an empty stack of integers

2. while there are more tokens

3. get the next token

4. if the first character of the token is a digit

5. push the token on the stack

6. else if the token is an operator

7. pop the right operand off the stack

8. pop the left operand off the stack

9. evaluate the operation

10. push the result onto the stack

11. pop the stack and return the result

7 -20*44 7

8

Evaluating Postfix Expressions (cont.)
52

 Listing 3.6 (PostfixEvaluator.java, pages 173

- 175)

10/26/2017

27

Converting from Infix to Postfix

 Convert infix expressions to postfix expressions

 Assume:

 expressions consists of only spaces, operands, and operators

 space is a delimiter character

 all operands that are identifiers begin with a letter or underscore

 all operands that are numbers begin with a digit

Converting from Infix to Postfix

(cont.)
54

 Example: convert

w – 5.1 / sum * 2

to its postfix form

w 5.1 sum / 2 * -

10/26/2017

28

Converting from Infix to Postfix

(cont.)

Converting from Infix to Postfix

(cont.)

10/26/2017

29

Converting from Infix to Postfix

(cont.)

Converting from Infix to Postfix

(cont.)

10/26/2017

30

Converting from Infix to Postfix

(cont.)
59

 Listing 3.7 (InfixToPostfix.java, pages 181 -

183)

Converting from Infix to Postfix

(cont.)

 Testing

 Use enough test expressions to satisfy yourself that the

conversions are correct for properly formed input

expressions

 Use a driver to catch
InfixToPostfix.SyntaxErrorException

 Listing 3.8 (TestInfixToPostfix.java, page

184)

10/26/2017

31

Converting Expressions with

Parentheses

 The ability to convert expressions with parentheses
is an important (and necessary) addition

 Modify processOperator to push each
opening parenthesis onto the stack as soon as it is
scanned

 When a closing parenthesis is encountered, pop
off operators until the opening parenthesis is
encountered

 Listing 3.9 (InfixToPostfixParens.java, pages
186 - 188)

