10/26/2017

CHAPTER 3 & 4

- Stacks & Queues

The Collection Framework

10/26/2017

Stack Abstract Data Type
-

0 A stack is one of the most commonly used
data structures in computer science

0 A stack can be compared to a Pez b
dispenser
o Only the top item can be accessed Ry

O You can extract only one item at a time

0 The top element in the stack is the last
added to the stack (most recently)

0 The stack’s storage policy is Last-In, First-
Out, or LIFO

Java Collections: Stack

0 The Java APl includes a stack
class as part of the package
java.util :

Stack<String> myStringStack = new Stack<String>();
Stack<Place> myPlacesStack = new Stack<Places>();

my StringStack.push(“Deepak”);

myPlacesStack.push(new Place(“19010”, “Bryn Mawr”, “PA"));

etc.

Specification of the Stack Abstract

Data Type
-b

0 Only the top element of a stack is visible; therefore the number of
operations performed by a stack are few

We need the ability to
O test for an empty stack (empty)

m}

O inspect the top element (peek)
O retrieve the top element (pop)

O put a new element on the stack (push)

boolean empty() Returns true if the stack is empty; otherwise, returns false.

E peek() Returns the object at the top of the stack without removing it.

E popQ) Returns the object at the top of the stack and removes it.

E push(E obj) Pushes an item onto the top of the stack and returns the item pushed.

A Stack of Strings

Jonathan Philip
Dustin Dustin Dustin
Robin Robin Robin
Debbie Debbie Debbie
Rich Rich Rich

(a) (b) (c)
o “Rich” is the oldest element on the stack and “Jonathan” is
the youngest (Figure a)

0 String last = names.peek(); stores a reference
to “Jonathan” in Last

0 String temp = names.pop(); removes “Jonathan”
and stores a reference to it in temp (Figure b)

0 names.push (“"Philip”); pushes “Philip” onto the
stack (Figure c)

10/26/2017

Other examples of stacks
2

0 Back button in browser

0 Palindrome checker
Go hang a salami, I'm a lasagna hog!

0 Matching parentheses
0 Expression evaluation

O printStackTrace()

Queve

1 |
0 The queue, like the stack, is a widely used data
structure
0 A queue differs from a stack in one important way
O A stack is LIFO list — Last-In, First-Out
o while a queve is FIFO list, First-In, First-Out

10/26/2017

10/26/2017

Queve Abstract Data Type
I

0 A queue can be visualized as a line of customers waiting for
service

0 The next person to be served is the one who has waited the
longest

0 New elements are placed at the end of the line

Print Queuve
I

0 Operating systems use queues to
O keep track of tasks waiting for a scarce resource
O ensure that the tasks are carried out in the order they were
generated

0 Print queue: printing is much slower than the process of
selecting pages to print, so a queuve is used

&% HP LaserJet 4050 Series PS - Use Printer Offline I =10l x|
Printer Document View Help
| Document Name | Status | Owner | Pages | Size | submitted]
E] Microsoft Word - Queues_Paul_1007.doc Paul Wolfgang s2 9.7SMB 1:53:18 PM 10/7/2003
] Microsoft Word - Stacks.doc Paul Wolfgang 46 9.05 MB 1:53:57 PM 10/7/2003
[ﬂl'icrosofl Word - Trees2.doc Paul Wolfgang 5S4 38.4MB 1:54:41 PM 107/2003
< | 2
3 document(s) in queue /4

10/26/2017

Specification for a Queue Interface
I

Method Behavior

boolean offer(E 1item) Inserts item at the rear of the queue. Returns true if successful; returns
false if the item could not be inserted.

E remove() Removes the entry at the front of the queue and returns it if the queue is
not empty. If the queue is empty, throws a NoSuchElementException.

E pol1Q) Removes the entry at the front of the queue and returns it; returns nul1 if
the queue is empty.

E peek() Returns the entry at the front of the queue without removing it; returns
null if the queue is empty.

E element() Returns the entry at the front of the queue without removing it. If the
queue is empty, throws a NoSuchETementException.

0 The queue interface implements the collection interface
(and therefore the 1terable interface), so a full
implementation of gueue must implement all required
methods of collection (and the 1terable interface)

Class LinkedList Implements the

Queue Interface
I

0 The rinkedrist class provides methods for inserting and
removing elements at either end of a double-linked list,
which means all gueue methods can be implemented easily

0 The Java 5.0 ninkedrist class implements the oueue interface
Queue<String> names = new LinkedList<String>();
O creates a new Queue reference, names, that stores references to
String objects

O The actual object referenced by names is of type
LinkedList<String>, but because names is a type
Queue<String> reference, you can apply only the Queue methods
to it

10/26/2017

The Collection Framework
I

IIIIII!I!!!I!IIII
£\
IIIII!II!!IIIIIIII
JANIIVANIIVAN

AbstractCollection

] [

: T 7
| ———— e e
| d I |
' '
‘ Deque ‘ AbstractList AbstractSet ‘ { Sortedset ‘
! %
it | | i I
|
|
' strac e s ector -ray o
! AbstractSequentiallist Vector ArraylList HashSet NavigableSet
'
| ST— AN I
| r———
£ |
'
’ LinkedList ‘ ‘ Stack ‘ LinkedHashSet ’ TreeSet ’1
'
|
'
'

'
ConcurrentSkipListSet

Java Collections: Queve
I

0 The Java APl includes a queue
interface as part of the package

java.util :
Queue<String> myStringQueue = new LinkedList<String>();
Queue<Place> myPlacesQueue = new LinkedList<Places>();
my StringQueve.offer(“Deepak”);
myPlacesQueue.offer(new Place(“19010”, “Bryn Mawr”, “PA"));

etc.

10/26/2017

Examples of Queues
N

0 Simulations of real life situations: Service Queues

0 Scheduling processes in Operating Systems

0 Keep track of state in systematic searches

Stacks & Quevues

ey

ava.util.Stack<E>

boolean empty()

E peek()

E pop()

B Both raise
EmptyStackException

E push(e)

+ all List<E> operations

java.util. Queve<E>

boolean add(e)

boolean offer(e)

E remove()
E poll()

E peek()
E element()

Return T/F/null
B Raise

NoSuchElementException

10/26/2017

- Stack Applications

Section 3.2

Finding Palindromes
N
0 Palindrome: a string that reads identically in either

direction, letter by letter (ignoring case)
o kayak

o"l saw | was I"

o “Able was | ere | saw Elba”

o "Level madam level"

0 Problem: Write a program that reads a string and
determines whether it is a palindrome

10/26/2017

Finding Palindromes (cont.)
N

private String inputString The input string.
private Stack<Character> charStack The stack where characters are stored.
public PalindromeFinder(String str) Initializes a new PalindromeFinder object, storing a refer-

ence to the parameter str in inputString and pushing each
character onto the stack.

private void fillStack() Fills the stack with the characters in inputString.

private String buildReverse() Returns the string formed by popping each character from
the stack and joining the characters. Empties the stack.

public boolean isPalindrome() Returns true if inputString and the string built by
buildReverse have the same contents, except for case.
Otherwise, returns false.

Finding Palindromes (cont.)
N

import java.util.*;

public class PalindromeFinder ({
private String inputString;

private Stack<Character> charStack = new
Stack<Character>();

public PalindromeFinder (String str) {
inputString = str;

fillStack(); // fills the stack with the characters in
inputString

10

10/26/2017

Finding Palindromes (cont.)
N

0 Solving using a stack:

o Push each string character, from left to right, onto a
stack

kayak

private void fillStack() {
for(int i = 0; 1 < inputString.length(); i++) {
charStack.push (inputString.charAt(i));
}
}

Finding Palindromes (cont.)
N

0 Solving using a stack:

O Pop each character off the stack, appending each to
the StringBuilder result

kayak

private String buildReverse () {
StringBuilder result = new StringBuilder();
while (!charStack.empty()) {
result.append (charStack.pop());
}
return result.toString();

}

11

10/26/2017

Finding Palindromes (cont.)
N

public boolean isPalindrome () {
return inputString.equalsIgnoreCase (buildReverse());

}

- Queue Applications

Discrete Event Simulation

12

10/26/2017

Discrete Event Simulation
R

0 Single Queue, single server

Rear Front
/

0 Single Queue, multiple servers |_|

Front

0 Multiple Queue, multiple servers

Rear Front
_/

Rear Front

- — h

Example: Single Queue, Single

Server
IR

0 Arrival process

O How customers arrive: What is inter-arrival time?
E.g. between 1-3 min

O Service mechanism: How long will service take?
E.g. 0.5 to 2.0 min

O Queve characteristics: FIFO

A h

13

Example Data

10/26/2017

ey |

[Customer | Iner-artival Time Service T

C

Queue Simulation

ime (min)
7

[1 | Awval] Quewe | Sever | Depari |

(@]
C2

c3
C4

~N
©

0

0
[C2]

0
[C3]

[C4,C3]

[C4]

i}

0

Idle
Cl
C1
c2
C2
c2
c3
c4

C1

C2
Cc2
Ca

Application: Lab Printer Simulation
N

0 There is one printer in the Computer Science Lab

0 At any given time, there may be as many as 10

students working in the lab

0 Each student may print upto twice in an hour

0 Print jobs are 1-20 pages long

0 & There are up to 20 print jobs in an hour

0 Question: What is the chance that in any given
second there will be a print job scheduled?

14

10/26/2017

Application: Lab Printer Simulation
N
0 There is one printer in the Computer Science Lab

0 At any given time, there may be as many as 10
students working in the lab

0 Each student may print upto twice in an hour
0 Print jobs are 1-20 pages long
0 & There are up to 20 print jobs in an hour

0 Question: What is the chance that in any given
second there will be a print job scheduled?

20 1 hour 1min 20 1 task
* * - =
1 hour 60min 60sec 3600 180 sec

Application: Lab Printer Simulation
(o4 |
00 There is one printer in the CS Lab (10 ppm)

0 At any given time, there may be as many as 10
students working in the lab

0 Each student may print upto twice in an hour
0 Print jobs are 1-20 pages long
0 & There are up to 20 print jobs in an hour

0 Question: What will the average wait time be for
students to receive their printouts?

0 Question: What would the average wait time be if
the printer were upgraded to 20 ppp?

15

- Implementing a Stack

Section 3.3

Java Collections: Stack

0 The Java APl includes a stack
class as part of the package
java.util :

Stack<String> myStringStack = new Stack<String>();
Stack<Place> myPlacesStack = new Stack<Places>();

my StringStack.push(“Deepak”);

myPlacesStack.push(new Place(“19010”, “Bryn Mawr”, “PA"));

etc.

10/26/2017

16

Implementing a Stack with a List

-%

O We can write a class, ListStack, that has a List component (in the
example below, theData)

0 We can use either the ArrayList, or the LinkedList classes, as all
implement the List interface. The push method, for example, can be
coded as

public E push(E obj) {
theData.add (obj) ;
return obj;

0 A class which adapts methods of another class by giving different names to
essentially the same methods (push instead of add) is called an adapter
class

O Writing methods in this way is called method delegation

Implementing a Stack Using an Array

0 If we implement a stack as an ar
we would need . .. Allocate storage for an

array with a default

public class ArrayStack<E> implemen
Keep track of the top of the

private E[] theData;
) 0fs K= 1. stack (subscript of the element
int top tack = ’ at the top of the stack; for

private static final int INITIAL empty stack = -1)

public ArrayStack() {
_CAPACITY];

There is no size variable or method

10/26/2017

17

10/26/2017

Implementing a Stack Using an Array

Character

Character

Character

reallocate();
} e
topOfStack++;
theData[topOfStack] = obj;
return obj;

ArrayStack

public E push(E obj) {
if (topOfStack == theData.length - 1) {

Implementing a Stack Using an Array

‘COI’IT.!
[

public E pop() {
if (empty()) A
throw new EmptyStackException();

}
return theData[topOfStack--];

} // pop ()

18

Implementing a Stack using an array
I

import java.util. EmptyStackException;
public class ArrayStack<E> implements StackiInt<E> {

E[] theData;
int topOfStack = -1; // Initially empty stack.
private static final int INITIAL_CAPACITY = 10;

public ArrayStack() {
theData = (E[]) new Object[INITIAL_CAPACITY];
} /1 ArrayStack()

public E push(E obj) {
if (topOfStack == theData.length - 1) {
reallocate();

}
topOfStack++;
theData[topOfStack] = obj;
return obj;

} 1 push()

public E pop() {
if (empty() {
throw new EmptyStackException();

return theData[topOfStack--];
}I'pop()

} /I class ArrayStack<E>

Implementing a Stack as a Linked

Data S
[

tructure

0 We can also implement a stack using a linked list of

nodes

LinkedStack

topOfStackRef = [—

Character Character Character Character
value = 'a' value = 'v' value = 'a' value = 'J'
Node Node Node Node
5‘ data = lzfj data = z(j data = =] j data = =
next = [—H next = [—H next = [—H next = null

when the

/

list is empty, pop

returns null

10/26/2017

19

10/26/2017

Implementing a Stack as a Linked

Data Structure ‘con’r.l

O Listing 3.5 (LinkedStack.java, pages 168 - 169)

Comparison of Stack

Implementations
-—

0 The easiest implementation uses a L1 st component
(ArrayList is the simplest) for storing data
o An underlying array requires reallocation of space
when the array becomes full, and

O an underlying linked data structure requires allocating
storage for links

O As all insertions and deletions occur at one end, they
are constant time, O(1), regardless of the type of
implementation used

20

10/26/2017

- Additional Stack Applications

Section 3.4

Additional Stack Applications

4 |
0 Postfix and infix notation
O Expressions normally are written in infix form, but

O it easier to evaluate an expression in postfix form since
there is no need to group sub-expressions in parentheses
or worry about operator precedence

Postfix Expression Infix Expression Value
4 7 * 4 * 7 28
4 7 2 4, % 4 % (7 + 2) 36
A 7 * 20 - 4 *7) - 20 8
[3 4 7 * 2 / + 3+ (4 *7/2) 17

—_—

21

10/26/2017

Evaluating Postfix Expressions
N

0 Write a class that evaluates a postfix expression

0 Use the space character as a delimiter between

tokens
Data Field Attribute
Stack<Integer> operandStack The stack of operands (Integer objects).
Method Behavior
public int eval(String expression) Returns the value of expression.
private int evalOp(char op) Pops two operands and applies operator op to its operands,

returning the result.

private boolean isOperator(char ch) Returns true if ch is an operator symbol.

Evaluating Postfix Expressions (cont.)
I

i

==) 1. create an empty stack of integers
=> 2. while there are more tokens
= 3. get the next token

=) 4. if the first character of the token is a digit
= 5. push the token on the stack

6. else if the token is an operator

7. pop the right operand off the stack

8. pop the left operand off the stack

9. evaluate the operation

10. push the result onto the stack
11. pop the stack and return the result

22

Evaluating Postfix Expressions (cont.)

1.
=) 2.
3.

=) 4.
= 5.

6.
7
8.
9
10.
11.

L |

create an empty stack of integers
while there are more tokens
get the next token
if the first character of the token is a digit
push the token on the stack
else if the token is an operator
pop the right operand off the stack
pop the left operand off the stack
evaluate the operation
push the result onto the stack

pop the stack and return the result

Evaluating Postfix Expressions (cont.)
I

= 2.

=) 4.

=) 6.

= 9.

10.
11.

* 1

t1

create an empty stack of integers

while there are more tokens
get the next token
if the first character of the token is a digit
push the token on the stack
else if the token is an operator
pop the right operand off the stack
pop the left operand off the stack
evaluate the operation
push the result onto the stack
pop the stack and return the result

10/26/2017

23

10/26/2017

Evaluating Postfix Expressions (cont.)
I

Ll

create an empty stack of integers
while there are more tokens
get the next token
if the first character of the token is a digit
push the token on the stack

else if the token is an operator

g o0 o WD

pop the right operand off the stack
8. pop the left operand off the stack
= 9. evaluate the operation
=>10. push the result onto the stack
11. pop the stack and return the result

Evaluating Postfix Expressions (cont.)
I

t1

1. create an empty stack of integers

==) 2. while there are more tokens

3. get the next token
=) 4. if the first character of the token is a digit
= 5. push the token on the stack

6. else if the token is an operator

7. pop the right operand off the stack

8. pop the left operand off the stack

9. evaluate the operation

10. push the result onto the stack
11. pop the stack and return the result

24

Evaluating Postfix Expressions (cont.)

28 - 20
t1
1. create an empty stack of integers
=> 2. while there are more tokens
3. get the next token
=) 4. if the first character of the token is a digit
5. push the token on the stack
=) 6. else if the token is an operator
7. pop the right operand off the stack
8. pop the left operand off the stack
= 9. evaluate the operation
10. push the result onto the stack
11. pop the stack and return the result

Evaluating Postfix Expressions (cont.)
I

S o0 o WD R

=>10.
11.

8 HRREE

i

create an empty stack of integers
while there are more tokens
get the next token
if the first character of the token is a digit
push the token on the stack
else if the token is an operator
pop the right operand off the stack
pop the left operand off the stack
evaluate the operation
push the result onto the stack
pop the stack and return the result

10/26/2017

25

10/26/2017

Evaluating Postfix Expressions (cont.)
I

i

. create an empty stack of integers
. while there are more tokens
get the next token

if the first character of the token is a digit

else if the token is an operator
pop the right operand off the stack

1

2

3

4

5. push the token on the stack

6

7

8 pop the left operand off the stack
9

evaluate the operation
10. push the result onto the stack
=) 11. pop the stack and return the result

Evaluating Postfix Expressions (cont.)
ey

O Listing 3.6 (PostfixEvaluator.java, pages 173
- 175)

26

10/26/2017

Converting from Infix to Posifix
N

o Convert infix expressions to postfix expressions
O Assume:
O expressions consists of only spaces, operands, and operators
O space is a delimiter character
O all operands that are identifiers begin with a letter or underscore

O all operands that are numbers begin with a digit

Data Field Attribute

i private Stack<Character> operatorStack Stack of operators.

“ private StringBuilder postfix The postfix string being formed.

’ public String convert(String infix) Extracts and processes each token in infix and returns
the equivalent postfix string.

{ private void processOperator(char op) Processes operator op by updating operatorStack.

\ private int precedence(char op) Returns the precedence of operator op.

\' private boolean isOperator(char ch) Returns true if ch is an operator symbol.

Converting from Infix to Postfix

$cont‘

0 Example: convert
w—=5.1/sum*2

to its postfix form
w 5.1 sum /2%-

27

10/26/2017

Converting from Infix to Postfix

3con’r.t
[

Effect on Effect on
Next Token Action operatorStack postfix
w Append w to w
postfix.

- The stack is empty
Push - onto the stack

5.1 Append 5.1 to w 5.1
postfix
¥ precedence(/) > 5.1

precedence(-),
Push / onto the stack

C|E|E|E|E|C

sum Append sum to w 5.1 sum
postfix

% precedence(*) equals w 5.1 sum /
precedence(/)

Pop / off of stack and
append to postfix

Converting from Infix to Postfix

SCOI‘IT.!
[

Effect on Effect on
Next Token Action operatorStack postfix

¥ precedence(*) >
precedence(-),
Push * onto the stack

w 5.1 sum /

2 Append 2 to w 5.1 sum / 2
postfix
End of input Stack is not empty, w 5.1 sum / 2 *

CE|E

Pop * off the stack and
append to postfix

End of input Stack is not empty,
Pop - off the stack and
append to postfix

B

w 5.1 sum / 2 * -

28

10/26/2017

Converting from Infix to Postfix
cont.

Algorithm for Method convert

1. Initialize postfix to an empty StringBuilder.

2. Initialize the operator stack to an empty stack.

3. while there are more tokens in the infix string

4, Get the next token.

5. if the next token is an operand

6. Append it to postfix.

7, else if the next token is an operator

5. Call processOperator to process the operator.
9. else
10, Indicate a syntax error.
11. Pop remaining operators off the operator stack and append them

to postfix.

Converting from Infix to Postfix

‘COI‘IT.t
[

Algorithm for Method processOperator

1. if the operator stack is empty

2. Push the current operator onto the stack.

else
3. Peck the operator stack and let topOp be the top operartor.
4. if the precedence of the current operator is greater than the

precedence of topOp

5. Push the current operator onto the stack.
else
6. while the stack is not empty and the precedence of the current
operator is less than or equal to the precedence of topOp
7. Pop topOp off the stack and append it to postfix.
8. if the operator stack i1s not empty
9. Peek the operator stack and let topOp be the top
operator.
10. Push the current operator onto the stack.

29

Converting from Infix to Postfix

$contz

O Listing 3.7 (InfixToPostfix.java, pages 181 -
183)

Converting from Infix to Postfix

‘COI‘IT.t
[

0 Testing

O Use enough test expressions to satisfy yourself that the
conversions are correct for properly formed input
expressions

O Use a driver to catch
InfixToPostfix.SyntaxErrorException

O Listing 3.8 (TestInfixToPostfix.java, page
184)

10/26/2017

30

10/26/2017

Converting Expressions with

Parentheses
I

0 The ability to convert expressions with parentheses
is an important (and necessary) addition

0 Modify processOperator to push each
opening parenthesis onto the stack as soon as it is
scanned

0 When a closing parenthesis is encountered, pop
off operators until the opening parenthesis is
encountered

O Listing 3.9 (InfixToPostfixParens.java, pages

186 - 188)

31

