
12/5/2017

1

SETS AND MAPS

Chapter 7

Introduction

 Java Collection Framework (ArrayList and

LinkedList)

 The classes that implement the List interface are all

indexed collections

 An index or subscript is associated with each element

 The element's index often reflects the relative order of its

insertion into the list

 Searching for a particular value in a list is generally O(n)

 An exception is a binary search of a sorted object, which is

O(log n)

2

12/5/2017

2

Introduction (cont.)

 Next, we consider another part of the

Collection hierarchy: the Set interface and the

classes that implement it

 Set objects

 are not indexed

 do not reveal the order of insertion of items

 enable efficient search and retrieval of information

 allow removal of elements without moving other

elements around

3

Introduction (cont.)

 Relative to a Set, Map objects provide efficient

search and retrieval of entries that contain pairs of

objects (a unique key and the information)

 Hash tables (implemented by a Map or Set) store

objects at arbitrary locations and offer an average

constant time for insertion, removal, and searching

4

12/5/2017

3

Section 7.1

Sets and the Set Interface5

Sets and the Set Interface
6

12/5/2017

4

The Set Abstraction

 A set is a collection that contains no duplicate elements and
at most one null element

 adding "apples" to the set
{"apples", "oranges", "pineapples"} results in
the same set (no change)

 Operations on sets include:

 testing for membership

 adding elements

 removing elements

 union A ∪ B

 intersection A ∩ B

 difference A – B

 subset A ⊂ B

7

The Set Abstraction(cont.)

 The union of two sets A, B is a set whose elements belong either to A
or B or to both A and B.

Example: {1, 3, 5, 7} ∪ {2, 3, 4, 5} is {1, 2, 3, 4, 5, 7}

 The intersection of sets A, B is the set whose elements belong to both
A and B.

Example: {1, 3, 5, 7} ∩ {2, 3, 4, 5} is {3, 5}

 The difference of sets A, B is the set whose elements belong to A but
not to B.

Examples: {1, 3, 5, 7} – {2, 3, 4, 5} is {1, 7}; {2, 3, 4, 5} – {1, 3, 5,
7} is {2, 4}

 Set A is a subset of set B if every element of set A is also an
element of set B.

Example: {1, 3, 5, 7} ⊂ {1, 2, 3, 4, 5, 7} is true

8

12/5/2017

5

The Set Interface and Methods(cont.)
9

Using sets in Java

import java.util.Set;

Set<String> setA = new HashSet<String>();

Set<String> setB = new TreeSet<String>();

HashSet is implemented using Hash Table (coming next)

TreeSet is implemented using a special kind of Binary

Search Tree – Red-Black Trees.

10

12/5/2017

6

The Set Interface and Methods(cont.)

Ann

Sally

Jill

setA

Ann

Bob

Jill

setB

Bill

11

The Set Interface and Methods(cont.)

Ann

Sally

Jill

setA

Ann

Bob

Jill

setB

Bill

setA.addAll(setB); // Set Union

System.out.println(setA);

Outputs:

[Bill, Jill, Ann, Sally, Bob]

12

12/5/2017

7

The Set Interface and Methods(cont.)

Ann

Sally

Jill

setA

Ann

Bob

Jill

setB

Bill

If a copy of original setA is in setACopy, then . . .

13

The Set Interface and Methods(cont.)

Ann

Sally

Jill

setA

Ann

Bob

Jill

setB

Bill

setACopy.retainAll(setB); // Set Intersection

System.out.println(setACopy);

Outputs:

[Jill, Ann]

14

12/5/2017

8

The Set Interface and Methods(cont.)

Ann

Sally

Jill

setA

Ann

Bob

Jill

setB

Bill

setACopy.removeAll(setB); // Set Difference

System.out.println(setACopy);

Outputs:

[Sally]

15

Comparison of Lists and Sets

 Collections implementing the Set interface may

contain only unique elements

 Unlike the List.add method, the Set.add method

returns false if you attempt to insert a duplicate

item

 Unlike a List, a Set does not have a get

method—elements cannot be accessed by index

16

12/5/2017

9

Comparison of Lists and Sets (cont.)

 You can iterate through all elements in a Set using

an Iterator object, but the elements will be

accessed in arbitrary order

for (String nextItem : setA) {

//Do something with nextItem

…

}

17

Section 7.2

Maps and the Map Interface18

12/5/2017

10

Maps and the Map Interface

 The Map is related to the Set

 Mathematically, a Map is a set of ordered pairs whose elements are
known as the key and the value

 Keys must be unique,
but values need not be
unique

 You can think of each key as a
“mapping” to a particular value

 A map provides efficient
storage and retrieval of
information in a table

 A map can have many-to-one
mapping: (B, Bill), (B2, Bill) {(J, Jane), (B, Bill),

(S, Sam), (B1, Bob),

(B2, Bill)}

19

Maps and the Map Interface(cont.)

 In an onto mapping, all the elements of valueSet

have a corresponding member in keySet

 The Map interface should have methods of the form

V.get (Object key)

V.put (K key, V value)

20

12/5/2017

11

Maps and the Map Interface(cont.)

 When information about an item is stored in a table, the
information should have a unique ID

 A unique ID may or may not be a number

 This unique ID is equivalent to a key

Type of item Key Value

University student Student ID number Student name, address,

major, grade point

average

Online store customer E-mail address Customer name, address,

credit card information,

shopping cart

Inventory item Part ID Description, quantity,

manufacturer, cost, price

21

Map Hierarchy
22

12/5/2017

12

Map Interface
23

Map Interface (cont.)

 The following statements build
a Map object:

Map<String, String> aMap =

new HashMap<String,

String>();

aMap.put("J", "Jane");

aMap.put("B", "Bill");

aMap.put("S", "Sam");

aMap.put("B1", "Bob");

aMap.put("B2", "Bill");

J

S

B1

B

B2

Jane

Sam

Bob

Bill

24

12/5/2017

13

Map Interface (cont.)

aMap.get("B1")

returns:

"Bob"

J

S

B1

B

B2

Jane

Sam

Bob

Bill

25

Map Interface (cont.)

aMap.get("Bill")

returns:

null

("Bill" is a value, not a key)

J

S

B1

B

B2

Jane

Sam

Bob

Bill

26

12/5/2017

14

Map Interface (cont.)

Map<String, String> places = new HashMap<String, Place>();

places.put(“Bryn MawrPA”, new Place(“Bryn Mawr”, “PA”,

“19010”));

Places.get(“Bryn MawrPA”);

returns

<Bryn Mawr, PA, 19010>

27

Section 7.3

Hash Tables28

12/5/2017

15

Hash Tables

 The goal of hash table is to be able to access an

entry based on its key value, not its location

 We want to be able to access an entry directly

through its key value, rather than by having to

determine its location first by searching for the key

value in an array

 Using a hash table enables us to retrieve an entry in

constant time (on average, O(1))

29

Hash Codes and Index Calculation

 The basis of hashing is to transform the item’s key

value into an integer value (its hash code) which is

then transformed into a table index

30

12/5/2017

16

Hash Codes and Index Calculation

 The basis of hashing is to transform the item’s key

value into an integer value (its hash code) which is

then transformed into a table index

“Bryn MawrPA”

<Bryn Mawr, PA, 19010>

f(“Bryn MawrPA”) = 2

31

Hash Codes and Index Calculation

 F(<key>) returns an index in range [0..n-1]

 Goal: Similar keys map to different locations in an array.

f(“Richards”) = 53

f(“Richardson”) = 417

 When two or more keys map to the same location, it is called a

collision.

E.g. f(“Richards”) = 53

f(“Deepak”) = 53

32

12/5/2017

17

Methods for Generating Hash Codes

 In most applications, a key will consist of strings of
letters or digits (such as a social security number, an
email address, or a partial ID) rather than a single
character

 The number of possible key values is much larger than
the table size. E.g. 10-letter strings have 2610 keys!

 Generating good hash codes typically is an
experimental process

 The goal is a random distribution of values

 Simple algorithms sometimes generate lots of collisions

33

Java hashCode Method

 Example hash function: sum the int values of all

f1 = (code(S0)+code(S1)+…+code(SN-1)) % tableSize

But, this returns the same hash code for "sign" and "sing“!

 Example hash function: use position + code

f2 = [1*code(S0)+2*code(S1)+…+N*code(SN-1)] % tableSize

 Java uses the following:

f3 = S0 x 31(n-1) + S1 x 31(n-2) + … + sN-1

<string>.hashCode() method in Java…

34

12/5/2017

18

Java hashCode Method

 The Java API algorithm accounts for position of the characters as well

 <string>.hashCode() returns the integer calculated by the
formula:

s0 x 31(n-1) + s1 x 31(n-2) + … + sn-1

where si is the ith character of the string, and n is the length of the string

 “Cat” has a hash code of:

‘C’ x 312 + ‘a’ x 31 + ‘t’ = 67,510

 31 is a prime number, and prime numbers generate relatively few
collisions

35

Java hashCode Method

String hashCode()

“Tom” 84274

“Dick” 2129869

“Harry” 69496448

“Sam” 82879

“Pete” 2484038

36

12/5/2017

19

Java hashCode Method (cont.)

 Because there are too many possible strings, the
integer value returned by hashCode() can't be
unique

 However, because the hashCode() method
distributes the hash code values fairly evenly
throughout the range, the probability of two strings
having the same hash code is low

 The probability of a collision with

s.hashCode() % table.length

is proportional to how full the table is

37

Methods for Generating Hash Codes

(cont.)

 A good hash function should be relatively simple

and efficient to compute

 It doesn't make sense to use an O(n) hash function to

avoid doing an O(n) search

38

12/5/2017

20

Open Addressing

 We now consider two ways to organize hash tables:

 open addressing

 chaining

 In open addressing, linear probing can be used to
access an item in a hash table

 If the index calculated for an item's key is occupied by an
item with that key, we have found the item

 If that element contains an item with a different key,
increment the index by one

 Keep incrementing until you find the key or a null entry

(assuming the table is not full)

39

Open Addressing (cont.)
40

12/5/2017

21

Table Wraparound and Search

Termination

 As you increment the table index, your table should wrap
around as in a circular array

 This enables you to search the part of the table before the
hash code value in addition to the part of the table after
the hash code value

 But it could lead to an infinite loop

 How do you know when to stop searching if the table is full
and you have not found the correct value?

 Stop when the index value for the next probe is the same as the
hash code value for the object

 Ensure that the table is never full by increasing its size after an
insertion when its load factor exceeds a specified threshold

41

Hash Code Insertion Example (cont.)

Name hashCode() hashCode()%5

"Tom" 84274 4

"Dick" 2129869 4

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]

[1]

[2]

[3]

[4]

Harry

Sam

Tom

Dick

Pete

Pete

Retrieval of "Tom" or "Harry" takes one step,

O(1)

Because of collisions, retrieval of the others

requires a linear search

42

12/5/2017

22

Hash Code Insertion Example (cont.)

Name hashCode() hashCode()%11

"Tom" 84274 3

"Dick" 2129869 5

"Harry" 69496448 10

"Sam" 82879 5

"Pete" 2484038 7

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

43

Hash Code Insertion Example (cont.)

Name hashCode() hashCode()%11

"Tom" 84274 3

"Dick" 2129869 5

"Harry" 69496448 10

"Sam" 82879 5

"Pete" 2484038 7

Tom

[0]

[1]

[2]

[3]

[4]

Dick

Sam

Pete

[5]

[6]

[7]

[8]

[9]

Harry[10]

The best way to reduce the

possibility of collision (and

reduce linear search retrieval

time because of collisions) is to

increase the table size

Only one

collision

occurred

44

12/5/2017

23

Traversing a Hash Table

 You cannot traverse a hash table in a meaningful

way since the sequence of stored values is arbitrary

Tom

[0]

[1]

[2]

[3]

[4]

Dick

Sam

Pete

[5]

[6]

[7]

[8]

[9]

Harry[10]

[0]

[1]

[2]

[3]

[4]

Harry

Sam

Tom

Dick

Pete

Dick, Sam, Pete, Harry, Tom

Tom, Dick, Sam,

Pete, Harry

45

Deleting an Item Using Open

Addressing

 When an item is deleted, you cannot simply set its table
entry to null

 If we search for an item that may have collided with the
deleted item, we may conclude incorrectly that it is not
in the table.

 Instead, store a dummy value or mark the location as
available, but previously occupied

 Deleted items reduce search efficiency which is
partially mitigated if they are marked as available

 You cannot simply replace a deleted item with a new
item until you verify that the new item is not in the table

46

12/5/2017

24

Reducing Collisions by Expanding

the Table Size

 Use a prime number for the size of the table to

reduce collisions

 A fuller table results in more collisions, so, when a

hash table becomes sufficiently full, a larger table

should be allocated and the entries reinserted

 You must reinsert (rehash) values into the new table;

do not copy values as some search chains which

were wrapped may break

 Deleted items are not reinserted, which saves space

and reduces the length of some search chains

47

Reducing Collisions Using Quadratic

Probing

 Linear probing tends to form clusters of keys in the hash table,
causing longer search chains

 Quadratic probing can reduce the effect of clustering

 Increments form a quadratic series (1 + 22 + 32 + ...)

probeNum++;

index = (startIndex + probeNum * probeNum) % table.length

 If an item has a hash code of 5, successive values of index will be 6
(5+1), 9 (5+4), 14 (5+9), . . .

48

12/5/2017

25

Problems with Quadratic Probing

 The disadvantage of quadratic probing is that the

next index calculation is time-consuming, involving

multiplication, addition, and modulo division

 A more efficient way to calculate the next index is:
k += 2;

index = (index + k) % table.length;

49

Problems with Quadratic Probing

(cont.)

 Examples:

 If the initial value of k is -1, successive values of k will

be 1, 3, 5, …

 If the initial value of index is 5, successive value of

index will be 6 (= 5 + 1), 9 (= 5 + 1 + 3), 14 (= 5 +

1 + 3 + 5), …

50

12/5/2017

26

Problems with Quadratic Probing

(cont.)

 A more serious problem is that not all table
elements are examined when looking for an
insertion index; this may mean that

 an item can't be inserted even when the table is not full

 the program will get stuck in an infinite loop searching
for an empty slot

 If the table size is a prime number and it is never
more than half full, this won't happen

 However, requiring a half empty table wastes a lot
of memory

51

Chaining

 Chaining is an alternative to open addressing

 Each table element references a linked list that contains
all of the items that hash to the same table index

 The linked list often is called a bucket

 The approach sometimes is called bucket hashing

52

12/5/2017

27

Chaining (cont.)

 Advantages relative to open addressing:

 Only items that have the same value for their hash

codes are examined when looking for an object

 You can store more elements in the table than the

number of table slots (indices)

 Once you determine an item is not present, you can

insert it at the beginning or end of the list

 To remove an item, you simply delete it; you do not

need to replace it with a dummy item or mark it as

deleted

53

Performance of Hash Tables



54

12/5/2017

28

Performance of Open Addressing

versus Chaining
55

Performance of Open Addressing versus

Chaining (cont.)

 Using chaining, if an item is in the table, on average

we must examine the table element corresponding

to the item’s hash code and then half of the items in

each list

c = 1 +

where L is the average number of items in a list (the

number of items divided by the table size)

2

L

56

12/5/2017

29

Performance of Hash Tables versus Sorted

Array and Binary Search Tree

 The number of comparisons required for a binary
search of a sorted array is O(log n)

 A sorted array of size 128 requires up to 7 probes (27

is 128) which is more than for a hash table of any size
that is 90% full

 A binary search tree performs similarly

 Insertion or removal

hash table O(1) expected; worst case

O(n)

unsorted array O(n)

binary search tree O(log n); worst case O(n)

57

