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RECURSION

Chapter 5

Section 5.1

Recursive Thinking
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Recursive Thinking

 Recursion is a problem-solving approach that can 

be used to generate simple solutions to certain kinds 

of problems that are difficult to solve by other 

means

 Recursion reduces a problem into one or more 

simpler versions of itself

Recursive Thinking (cont.)

Recursive Algorithm to Process Nested Figures

if there is one figure

do whatever is required to the figure

else

do whatever is required to the outer figure

process the figures nested inside the outer 

figure in the same way
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Recursive Thinking (cont.)

 Consider searching for a target value in an array

Recursive Thinking (cont.)

 Consider searching for a target value in an array

Sound familiar??

How did we do this?
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Recursive Thinking (cont.)

 Consider searching for a target value in an array

 Assume the array elements are sorted in increasing 

order

Does that change anything about how we search?

Recursive Thinking (cont.)

 Consider searching for a target value in an array

 Assume the array elements are sorted in increasing 

order

 We compare the target to the middle element and, if 

the middle element does not match the target, search 

either the elements before the middle element or the 

elements after the middle element

 Instead of searching n elements, we search n/2 

elements

0 n-1
middle
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Recursive Thinking (cont.)

Recursive Algorithm to Search an Array

if the array is empty

return -1 as the search result

else if the middle element matches the target

return the subscript of the middle element as the result

else if the target is less than the middle element 

recursively search the array elements preceding the 
middle element and return the result

else 

recursively search the array elements following the 
middle element and return the result

0 n-1
middle

Steps to Design a Recursive 

Algorithm

 There must be at least one case (the base case), for a 
small value of n, that can be solved directly

 A problem of a given size n can be reduced to one or 
more smaller versions of the same problem (recursive 
case(s))

 Identify the base case(s) and solve it/them directly

 Devise a strategy to reduce the problem to smaller 
versions of itself while making progress toward the 
base case

 Combine the solutions to the smaller problems to solve 
the larger problem
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Section 5.2

Recursive Definitions of 

Mathematical Formulas

Recursive Definitions of 

Mathematical Formulas

 Mathematicians often use recursive definitions of 

formulas that lead naturally to recursive algorithms

 Examples include:

 factorials

 powers

 greatest common divisors (gcd)
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Factorial of n: n!

 The factorial of n, or n! is defined as follows:

0! = 1

n! = n x (n -1)! (n > 0)

 The base case: n is equal to 0

 The second formula is a recursive definition

Factorial of n: n! (cont.)

 The recursive definition can be expressed by the 

following algorithm:

if n equals 0

n! is 1

else

n! = n x (n – 1)!

 The last step can be implemented as:

return n * factorial(n – 1);
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Factorial of n: n! (cont.)

public static int factorial(int n) {

if (n == 0) 

return 1;

else

return n * factorial(n – 1);

} // factorial()

Infinite Recursion and Stack Overflow

 If you call method factorial with a negative 
argument, the recursion will not terminate because n
will never equal 0

 If a program does not terminate, it will eventually 
throw the StackOverflowError exception

 Make sure your recursive methods are constructed 
so that a stopping case is always reached

 In the factorial method, you could throw an 

IllegalArgumentException if n is 

negative
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Factorial of n: n! (cont.)

public static int factorial(int n) {

if (n < 0)

throw new IllegalArgumentException(n);

if (n == 0) 

return 1;

else

return n * factorial(n – 1);

} // factorial()

Recursive Algorithm for Calculating 

xn

Recursive Algorithm for Calculating xn (n ≥ 0)

if n is 0

The result is 1

else

The result is x × xn–1
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Recursive Algorithm for Calculating 

xn

Recursive Algorithm for Calculating xn (n ≥ 0)

if n is 0

The result is 1

else

The result is x × xn–1

public static double power(double x, int n) {

if (n == 0)

return 1;

else

return x * power(x, n – 1);

} // power()

Recursive Algorithm for Calculating 

gcd

 The greatest common divisor (gcd) of two numbers 

is the largest integer that divides both numbers

 The gcd of 20 and 15 is 5

 The gcd of 36 and 24 is 12

 The gcd of 38 and 18 is 2

 The gcd of 17 and 97 is 1
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Recursive Algorithm for Calculating 

gcd (cont.)

 Given 2 positive integers m and n (m > n)

if n is a divisor of m

gcd(m, n) = n

else

gcd (m, n) = gcd (n, m % n)

Recursive Algorithm for Calculating 

gcd (cont.)

public static double gcd(int m, int n) {

if (m % n == 0)

return n;

else if (m < n)

return gcd(n, m); // Transpose arguments.

else

return gcd(n, m % n);

} // gcd()
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Recursion Versus Iteration

 There are similarities between recursion and iteration

 In iteration, a loop repetition condition determines 

whether to repeat the loop body or exit from the loop

 In recursion, the condition usually tests for a base case 

 You can always write an iterative solution to a problem 

that is solvable by recursion

 A recursive algorithm may be simpler than an iterative 

algorithm and thus easier to write, code, debug, and 

read

Iterative factorial Method

public static int factorialIter(int n) {

int result = 1;

for (int k = 1; k <= n; k++)

result = result * k;

return result;

} // factoriialIter()
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Efficiency of Recursion

 Recursive methods often have slower execution times 
relative to their iterative counterparts

 The overhead for loop repetition is smaller than the 
overhead for a method call and return

 If it is easier to conceptualize an algorithm using 
recursion, then you should code it as a recursive 
method

 The reduction in efficiency usually does not 
outweigh the advantage of readable code that is 
easy to debug

Fibonacci Numbers

 Fibonacci numbers were used to model the growth 

of a rabbit colony

fib1 = 1

fib2 = 1

fibn = fibn-1 + fibn-2

 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …
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An Exponential Recursive 

fibonacci Method

Efficiency of Recursion: Exponential 

fibonacci

Inefficient
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An O(n) Recursive fibonacci

Method

An O(n) Recursive fibonacci

Method (cont.)

 In order to start the method executing, we provide a 
non-recursive wrapper method:

/** Wrapper method for calculating Fibonacci numbers 
(in RecursiveMethods.java).

pre: n >= 1

@param n The position of the desired Fibonacci 
number

@return The value of the nth Fibonacci number

*/

public static int fibonacciStart(int n) {

return fibo(1, 0, n);

} 
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Efficiency of Recursion: O(n) 

fibonacci

Efficient

Efficiency of Recursion: O(n) 

fibonacci
32

 Method fibo is an example of tail recursion or last-

line recursion

 When recursive call is the last line of the method, 

arguments and local variable do not need to be 

saved in the activation frame
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Section 5.3

Recursive Array Search

Recursive Array Search

 Searching an array can be accomplished using 

recursion

 Simplest way to search is a linear search

 Examine one element at a time starting with the first 

element and ending with the last

 On average, (n + 1)/2 elements are examined to find 

the target in a linear search

 If the target is not in the list, n elements are examined

 A linear search is O(n)
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Recursive Array Search (cont.)

 Base cases for recursive search: 

 Empty array, target can not be found; result is -1

 First element of the array being searched = target; 

result is the subscript of first element

 The recursive step searches the rest of the array, 

excluding the first element

Algorithm for Recursive Linear Array 

Search

Algorithm for Recursive Linear Array Search
if the array is empty

the result is –1
else if the first element matches the target

the result is the subscript of the first element
else

search the array excluding the first element and return the result



11/2/2017

19

Implementation of Recursive Linear 

Search

Implementation of Recursive Linear 

Search (cont.)

 A non-recursive wrapper method:

/** Wrapper for recursive linear search method

@param items The array being searched

@param target The object being searched for

@return The subscript of target if found;

otherwise -1

*/

public static int linearSearch(Object[] items, Object target) 

{

return linearSearch(items, target, 0);

}
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Implementation of Recursive Linear 

Search (cont.)

Design of a Binary Search Algorithm

 A binary search can be performed only on an array 
that has been sorted

 Base cases
 The array is empty

 Element being examined matches the target

 Rather than looking at the first element, a binary search 
compares the middle element for a match with the 
target

 If the middle element does not match the target, a 
binary search excludes the half of the array within 
which the target cannot lie
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Design of a Binary Search Algorithm 

(cont.)

Binary Search Algorithm

if the array is empty

return –1 as the search result
else if the middle element matches the target

return the subscript of the middle element as the result
else if the target is less than the middle element

recursively search the array elements before the middle element

and return the result
else

recursively search the array elements after the middle element and

return the result

Binary Search Algorithm

Caryn Debbie Dustin Elliot Jacquie Jonathon Rich

Dustin

target

first = 0 last = 6middle = 3

First call
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Binary Search Algorithm (cont.)

Caryn Debbie Dustin Elliot Jacquie Jonathon Rich

Dustin

target

first = 0 last = 2

middle = 1

Second call

Binary Search Algorithm (cont.)

Caryn Debbie Dustin Elliot Jacquie Jonathon Rich

Dustin

target

first= middle = last = 2

Third call
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Efficiency of Binary Search

 At each recursive call we eliminate half the array 
elements from consideration, making  a binary search 
O(log n)

 An array of 16 would search arrays of length 16, 8, 4, 
2, and 1: 5 probes in the worst case
 16 = 24

 5 = log216 + 1

 A doubled array size would require only 6 probes in the 
worst case
 32 = 25

 6 = log232 + 1

 An array with 32,768 elements requires only 16 probes! 
(log232768 = 15)

Comparable Interface

 Classes that implement the Comparable interface 

must define a compareTo method 

 Method call obj1.compareTo(obj2) returns an 

integer with the following values

 negative if obj1 < obj2 

 zero if obj1 == obj2 

 positive if  obj1 > obj2

 Implementing the Comparable interface is an 

efficient way to compare objects during a search
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Implementation of a Binary Search 

Algorithm

Implementation of a Binary Search 

Algorithm (cont.)
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Trace of Binary Search

Method Arrays.binarySearch

 Java API class Arrays contains a binarySearch

method

 Called with sorted arrays of primitive types or with 

sorted arrays of objects

 If the objects in the array are not mutually comparable 

or if the array is not sorted, the results are undefined

 If there are multiple copies of the target value in the 

array, there is no guarantee which one will be found

 Throws ClassCastException if the target is not 

comparable to the array elements
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Section 5.5

Problem Solving with Recursion

Simplified Towers of Hanoi

 Move the three disks to a different peg, maintaining 

their order (largest disk on bottom, smallest on top, 

etc.)

 Only the top disk on a peg can be moved to another 

peg

 A larger disk cannot be placed on top of a smaller disk
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Towers of Hanoi

Algorithm for Towers of Hanoi

Solution to Three-Disk Problem: Move Three Disks from Peg L to Peg R

1. Move the top two disks from peg L to peg M.

2. Move the bottom disk from peg L to peg R.

3. Move the top two disks from peg M to peg R.
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Algorithm for Towers of Hanoi (cont.)

Solution to Three-Disk Problem: Move Top Two Disks from Peg M to Peg R

1. Move the top disk from peg M to peg L.

2. Move the bottom disk from peg M to peg R.

3. Move the top disk from peg L to peg R.

Algorithm for Towers of Hanoi (cont.)

Solution to Four-Disk Problem: Move Four Disks from Peg L to Peg R

1. Move the top three disks from peg L to peg M.

2. Move the bottom disk from peg L to peg R.

3. Move the top three disks from peg M to peg R.
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Recursive Algorithm for Towers of 

Hanoi

Recursive Algorithm for n -Disk Problem: Move n Disks from the Starting Peg to the 

Destination Peg
if n is 1

move disk 1 (the smallest disk) from the starting peg to the destination

peg
else

move the top n – 1 disks from the starting peg to the temporary peg

(neither starting nor destination peg)

move disk n (the disk at the bottom) from the starting peg to the

destination peg

move the top n – 1 disks from the temporary peg to the destination peg

Recursive Algorithm for Towers of 

Hanoi (cont.)
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Implementation of Recursive Towers 

of Hanoi


