
11/2/2017

1

RECURSION

Chapter 5

Section 5.1

Recursive Thinking

11/2/2017

2

Recursive Thinking

 Recursion is a problem-solving approach that can

be used to generate simple solutions to certain kinds

of problems that are difficult to solve by other

means

 Recursion reduces a problem into one or more

simpler versions of itself

Recursive Thinking (cont.)

Recursive Algorithm to Process Nested Figures

if there is one figure

do whatever is required to the figure

else

do whatever is required to the outer figure

process the figures nested inside the outer

figure in the same way

11/2/2017

3

Recursive Thinking (cont.)

 Consider searching for a target value in an array

Recursive Thinking (cont.)

 Consider searching for a target value in an array

Sound familiar??

How did we do this?

11/2/2017

4

Recursive Thinking (cont.)

 Consider searching for a target value in an array

 Assume the array elements are sorted in increasing

order

Does that change anything about how we search?

Recursive Thinking (cont.)

 Consider searching for a target value in an array

 Assume the array elements are sorted in increasing

order

 We compare the target to the middle element and, if

the middle element does not match the target, search

either the elements before the middle element or the

elements after the middle element

 Instead of searching n elements, we search n/2

elements

0 n-1
middle

11/2/2017

5

Recursive Thinking (cont.)

Recursive Algorithm to Search an Array

if the array is empty

return -1 as the search result

else if the middle element matches the target

return the subscript of the middle element as the result

else if the target is less than the middle element

recursively search the array elements preceding the
middle element and return the result

else

recursively search the array elements following the
middle element and return the result

0 n-1
middle

Steps to Design a Recursive

Algorithm

 There must be at least one case (the base case), for a
small value of n, that can be solved directly

 A problem of a given size n can be reduced to one or
more smaller versions of the same problem (recursive
case(s))

 Identify the base case(s) and solve it/them directly

 Devise a strategy to reduce the problem to smaller
versions of itself while making progress toward the
base case

 Combine the solutions to the smaller problems to solve
the larger problem

11/2/2017

6

Section 5.2

Recursive Definitions of

Mathematical Formulas

Recursive Definitions of

Mathematical Formulas

 Mathematicians often use recursive definitions of

formulas that lead naturally to recursive algorithms

 Examples include:

 factorials

 powers

 greatest common divisors (gcd)

11/2/2017

7

Factorial of n: n!

 The factorial of n, or n! is defined as follows:

0! = 1

n! = n x (n -1)! (n > 0)

 The base case: n is equal to 0

 The second formula is a recursive definition

Factorial of n: n! (cont.)

 The recursive definition can be expressed by the

following algorithm:

if n equals 0

n! is 1

else

n! = n x (n – 1)!

 The last step can be implemented as:

return n * factorial(n – 1);

11/2/2017

8

Factorial of n: n! (cont.)

public static int factorial(int n) {

if (n == 0)

return 1;

else

return n * factorial(n – 1);

} // factorial()

Infinite Recursion and Stack Overflow

 If you call method factorial with a negative
argument, the recursion will not terminate because n
will never equal 0

 If a program does not terminate, it will eventually
throw the StackOverflowError exception

 Make sure your recursive methods are constructed
so that a stopping case is always reached

 In the factorial method, you could throw an

IllegalArgumentException if n is

negative

11/2/2017

9

Factorial of n: n! (cont.)

public static int factorial(int n) {

if (n < 0)

throw new IllegalArgumentException(n);

if (n == 0)

return 1;

else

return n * factorial(n – 1);

} // factorial()

Recursive Algorithm for Calculating

xn

Recursive Algorithm for Calculating xn (n ≥ 0)

if n is 0

The result is 1

else

The result is x × xn–1

11/2/2017

10

Recursive Algorithm for Calculating

xn

Recursive Algorithm for Calculating xn (n ≥ 0)

if n is 0

The result is 1

else

The result is x × xn–1

public static double power(double x, int n) {

if (n == 0)

return 1;

else

return x * power(x, n – 1);

} // power()

Recursive Algorithm for Calculating

gcd

 The greatest common divisor (gcd) of two numbers

is the largest integer that divides both numbers

 The gcd of 20 and 15 is 5

 The gcd of 36 and 24 is 12

 The gcd of 38 and 18 is 2

 The gcd of 17 and 97 is 1

11/2/2017

11

Recursive Algorithm for Calculating

gcd (cont.)

 Given 2 positive integers m and n (m > n)

if n is a divisor of m

gcd(m, n) = n

else

gcd (m, n) = gcd (n, m % n)

Recursive Algorithm for Calculating

gcd (cont.)

public static double gcd(int m, int n) {

if (m % n == 0)

return n;

else if (m < n)

return gcd(n, m); // Transpose arguments.

else

return gcd(n, m % n);

} // gcd()

11/2/2017

12

Recursion Versus Iteration

 There are similarities between recursion and iteration

 In iteration, a loop repetition condition determines

whether to repeat the loop body or exit from the loop

 In recursion, the condition usually tests for a base case

 You can always write an iterative solution to a problem

that is solvable by recursion

 A recursive algorithm may be simpler than an iterative

algorithm and thus easier to write, code, debug, and

read

Iterative factorial Method

public static int factorialIter(int n) {

int result = 1;

for (int k = 1; k <= n; k++)

result = result * k;

return result;

} // factoriialIter()

11/2/2017

13

Efficiency of Recursion

 Recursive methods often have slower execution times
relative to their iterative counterparts

 The overhead for loop repetition is smaller than the
overhead for a method call and return

 If it is easier to conceptualize an algorithm using
recursion, then you should code it as a recursive
method

 The reduction in efficiency usually does not
outweigh the advantage of readable code that is
easy to debug

Fibonacci Numbers

 Fibonacci numbers were used to model the growth

of a rabbit colony

fib1 = 1

fib2 = 1

fibn = fibn-1 + fibn-2

 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

11/2/2017

14

An Exponential Recursive

fibonacci Method

Efficiency of Recursion: Exponential

fibonacci

Inefficient

11/2/2017

15

An O(n) Recursive fibonacci

Method

An O(n) Recursive fibonacci

Method (cont.)

 In order to start the method executing, we provide a
non-recursive wrapper method:

/** Wrapper method for calculating Fibonacci numbers
(in RecursiveMethods.java).

pre: n >= 1

@param n The position of the desired Fibonacci
number

@return The value of the nth Fibonacci number

*/

public static int fibonacciStart(int n) {

return fibo(1, 0, n);

}

11/2/2017

16

Efficiency of Recursion: O(n)

fibonacci

Efficient

Efficiency of Recursion: O(n)

fibonacci
32

 Method fibo is an example of tail recursion or last-

line recursion

 When recursive call is the last line of the method,

arguments and local variable do not need to be

saved in the activation frame

11/2/2017

17

Section 5.3

Recursive Array Search

Recursive Array Search

 Searching an array can be accomplished using

recursion

 Simplest way to search is a linear search

 Examine one element at a time starting with the first

element and ending with the last

 On average, (n + 1)/2 elements are examined to find

the target in a linear search

 If the target is not in the list, n elements are examined

 A linear search is O(n)

11/2/2017

18

Recursive Array Search (cont.)

 Base cases for recursive search:

 Empty array, target can not be found; result is -1

 First element of the array being searched = target;

result is the subscript of first element

 The recursive step searches the rest of the array,

excluding the first element

Algorithm for Recursive Linear Array

Search

Algorithm for Recursive Linear Array Search
if the array is empty

the result is –1
else if the first element matches the target

the result is the subscript of the first element
else

search the array excluding the first element and return the result

11/2/2017

19

Implementation of Recursive Linear

Search

Implementation of Recursive Linear

Search (cont.)

 A non-recursive wrapper method:

/** Wrapper for recursive linear search method

@param items The array being searched

@param target The object being searched for

@return The subscript of target if found;

otherwise -1

*/

public static int linearSearch(Object[] items, Object target)

{

return linearSearch(items, target, 0);

}

11/2/2017

20

Implementation of Recursive Linear

Search (cont.)

Design of a Binary Search Algorithm

 A binary search can be performed only on an array
that has been sorted

 Base cases
 The array is empty

 Element being examined matches the target

 Rather than looking at the first element, a binary search
compares the middle element for a match with the
target

 If the middle element does not match the target, a
binary search excludes the half of the array within
which the target cannot lie

11/2/2017

21

Design of a Binary Search Algorithm

(cont.)

Binary Search Algorithm

if the array is empty

return –1 as the search result
else if the middle element matches the target

return the subscript of the middle element as the result
else if the target is less than the middle element

recursively search the array elements before the middle element

and return the result
else

recursively search the array elements after the middle element and

return the result

Binary Search Algorithm

Caryn Debbie Dustin Elliot Jacquie Jonathon Rich

Dustin

target

first = 0 last = 6middle = 3

First call

11/2/2017

22

Binary Search Algorithm (cont.)

Caryn Debbie Dustin Elliot Jacquie Jonathon Rich

Dustin

target

first = 0 last = 2

middle = 1

Second call

Binary Search Algorithm (cont.)

Caryn Debbie Dustin Elliot Jacquie Jonathon Rich

Dustin

target

first= middle = last = 2

Third call

11/2/2017

23

Efficiency of Binary Search

 At each recursive call we eliminate half the array
elements from consideration, making a binary search
O(log n)

 An array of 16 would search arrays of length 16, 8, 4,
2, and 1: 5 probes in the worst case
 16 = 24

 5 = log216 + 1

 A doubled array size would require only 6 probes in the
worst case
 32 = 25

 6 = log232 + 1

 An array with 32,768 elements requires only 16 probes!
(log232768 = 15)

Comparable Interface

 Classes that implement the Comparable interface

must define a compareTo method

 Method call obj1.compareTo(obj2) returns an

integer with the following values

 negative if obj1 < obj2

 zero if obj1 == obj2

 positive if obj1 > obj2

 Implementing the Comparable interface is an

efficient way to compare objects during a search

11/2/2017

24

Implementation of a Binary Search

Algorithm

Implementation of a Binary Search

Algorithm (cont.)

11/2/2017

25

Trace of Binary Search

Method Arrays.binarySearch

 Java API class Arrays contains a binarySearch

method

 Called with sorted arrays of primitive types or with

sorted arrays of objects

 If the objects in the array are not mutually comparable

or if the array is not sorted, the results are undefined

 If there are multiple copies of the target value in the

array, there is no guarantee which one will be found

 Throws ClassCastException if the target is not

comparable to the array elements

11/2/2017

26

Section 5.5

Problem Solving with Recursion

Simplified Towers of Hanoi

 Move the three disks to a different peg, maintaining

their order (largest disk on bottom, smallest on top,

etc.)

 Only the top disk on a peg can be moved to another

peg

 A larger disk cannot be placed on top of a smaller disk

11/2/2017

27

Towers of Hanoi

Algorithm for Towers of Hanoi

Solution to Three-Disk Problem: Move Three Disks from Peg L to Peg R

1. Move the top two disks from peg L to peg M.

2. Move the bottom disk from peg L to peg R.

3. Move the top two disks from peg M to peg R.

11/2/2017

28

Algorithm for Towers of Hanoi (cont.)

Solution to Three-Disk Problem: Move Top Two Disks from Peg M to Peg R

1. Move the top disk from peg M to peg L.

2. Move the bottom disk from peg M to peg R.

3. Move the top disk from peg L to peg R.

Algorithm for Towers of Hanoi (cont.)

Solution to Four-Disk Problem: Move Four Disks from Peg L to Peg R

1. Move the top three disks from peg L to peg M.

2. Move the bottom disk from peg L to peg R.

3. Move the top three disks from peg M to peg R.

11/2/2017

29

Recursive Algorithm for Towers of

Hanoi

Recursive Algorithm for n -Disk Problem: Move n Disks from the Starting Peg to the

Destination Peg
if n is 1

move disk 1 (the smallest disk) from the starting peg to the destination

peg
else

move the top n – 1 disks from the starting peg to the temporary peg

(neither starting nor destination peg)

move disk n (the disk at the bottom) from the starting peg to the

destination peg

move the top n – 1 disks from the temporary peg to the destination peg

Recursive Algorithm for Towers of

Hanoi (cont.)

11/2/2017

30

Implementation of Recursive Towers

of Hanoi

