Queue Applications

Discrete Event Simulation

- **Single Queue, single server**
 - Rear → Front
 - h

- **Single Queue, multiple servers**
 - Rear → Front
 - h
 - h

- **Multiple Queue, multiple servers**
 - Rear → Front
 - h
 - h
 - h
Example: Single Queue, Single Server

- Arrival process
 - How customers arrive: What is inter-arrival time? E.g. between 1-3 min
 - Service mechanism: How long will service take? E.g. 0.5 to 2.0 min
 - Queue characteristics: FIFO

Example Data

<table>
<thead>
<tr>
<th>Customer</th>
<th>Inter-arrival Time</th>
<th>Service Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1.9</td>
<td>1.7</td>
</tr>
<tr>
<td>C2</td>
<td>1.3</td>
<td>1.8</td>
</tr>
<tr>
<td>C3</td>
<td>1.1</td>
<td>1.5</td>
</tr>
<tr>
<td>C4</td>
<td>1.0</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Queue Simulation

<table>
<thead>
<tr>
<th>T</th>
<th>Arrival</th>
<th>Queue</th>
<th>Server</th>
<th>Depart</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>Idle</td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td>C1</td>
<td>[]</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>C2</td>
<td>[C2]</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td></td>
<td>[]</td>
<td>C2</td>
<td>C1</td>
</tr>
<tr>
<td>4.3</td>
<td>C3</td>
<td>[C3]</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>C4</td>
<td>[C4, C3]</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td></td>
<td>[C4]</td>
<td>C3</td>
<td>C2</td>
</tr>
<tr>
<td>6.9</td>
<td></td>
<td>[]</td>
<td>C4</td>
<td>C2</td>
</tr>
<tr>
<td>7.8</td>
<td></td>
<td>[]</td>
<td>C4</td>
<td></td>
</tr>
</tbody>
</table>
Application: Lab Printer Simulation

☐ There is one printer in the Computer Science Lab
☐ At any given time, there may be as many as 10 students working in the lab
☐ Each student may print up to twice in an hour
☐ Print jobs are 1-20 pages long
☐ ∴ There are up to 20 print jobs in an hour
☐ Question: What is the chance that in any given second there will be a print job scheduled?

Application: Lab Printer Simulation

☐ There is one printer in the Computer Science Lab
☐ At any given time, there may be as many as 10 students working in the lab
☐ Each student may print up to twice in an hour
☐ Print jobs are 1-20 pages long
☐ ∴ There are up to 20 print jobs in an hour
☐ Question: What is the chance that in any given second there will be a print job scheduled?

\[
\frac{20}{1 \text{ hour}} \cdot \frac{1 \text{ hour}}{60 \text{ min}} \cdot \frac{1 \text{ min}}{60 \text{ sec}} = \frac{20}{3600} = \frac{1 \text{ task}}{180 \text{ sec}}
\]
Application: Lab Printer Simulation

- There is one printer in the CS Lab (10 ppm)
- At any given time, there may be as many as 10 students working in the lab
- Each student may print up to twice in an hour
- Print jobs are 1-20 pages long
- Therefore, there are up to 20 print jobs in an hour
- Question: What will the average wait time be for students to receive their printouts?
- Question: What would the average wait time be if the printer were upgraded to 20 ppp?

Lab Printer Simulation

- Need representation of a task:
 - time stamp – time when the print job arrives
 - # pages - # pages in the print task
- Need a printer queue
 - keeps track of print jobs
Simulation: Main Loop

for each tick (second)
1. Is there a new task? 1/180 chance!
 if so, create a new task and add it to the printer queue

2. Do we need to schedule a new task on printer?
 if printer is idle and there is a task on printer queue
 a. remove next task from printer queue and assign it to printer
 b. record wait time for this task [current time – time stamp]
 c. how long will task take?

3. Printer prints for 1 second
 a. take off 1 sec from task time
 b. if task completed, set printer to idle

Finally, compute average wait time & print results

Modeling the Task & Printer

<table>
<thead>
<tr>
<th>Task</th>
<th>Printer</th>
</tr>
</thead>
</table>
| - int timestamp
- int pages (1-20) | - int pageRate (ppm)
- Task task
- int timeRemaining |
| Task(task)
// Constructor
+ int getTimeStamp()
// Accessor
+ int getPages()
// Accessor
+ int waitTime(task)
// Compute wait time
+ String toString()
// Print method | Printer(ppm)
// Constructor
+ void tick()
// Do 1 sec of printing
+ boolean busy()
// Is printer busy?
+ void startNextTask(newTask)
// Schedule newTask on printer |
Task Implementation

public class Task {
 private int timestamp; // When a print request arrives (in ticks since 0)
 private int pages; // # pages of the print job [1..20]

 public Task(int t) { // Constructor. T is time stamp (seconds)
 timestamp = t;
 pages = (int) (1 + 20 * Math.random());
 } // Task()

 public int getTimeStamp() {
 return timestamp;
 } // getTimeStamp()

 public int getPages() {
 return pages;
 } // getPages()

 public int waitTime(int currentTime) {
 return currentTime - timestamp;
 } // waitTime()

 public String toString() {
 return "Task" + "@" + timestamp + ", " + pages + " pages."
 } // toString()
} // class Task

Printer Implementation

public class Printer {
 private int pageRate; // pages per minute (ppm)
 private Task currentTask; // current task on printer
 private int timeRemaining; // time remaining on current task

 public Printer(int ppm) {
 pageRate = ppm;
 currentTask = null;
 timeRemaining = 0;
 } // Printer()

 public void tick() {
 if (currentTask != null) {
 timeRemaining--;
 if (timeRemaining == 0)
 currentTask = null;
 }
 } // tick()

 public boolean busy() {
 return currentTask != null;
 } // busy()

 public void startNext(Task newTask) {
 currentTask = newTask;
 timeRemaining = newTask.getPages() * 60 / pageRate;
 } // startNext()
} // class Printer
Simulation: Main Loop

for each tick (second)
1. Is there a new task? 1/180 chance!
 if so, create a new task and add it to the printer queue

2. Do we need to schedule a new task on printer?
 if printer is idle and there is a task on printer queue
 a. remove next task from printer queue and assign it to printer
 b. record wait time for this task [current time – time stamp]
 c. how long will task take?

3. Printer prints for 1 second
 a. take off 1 sec from task time
 b. if task completed, set printer to idle

Finally, compute average wait time & print results

Skeletal Main Program

```java
public class PQSim {
    // Simulate for time (Seconds) for a printer speed (ppm)
    public static void simulate(int seconds, int ppm) {
        Printer = labPrinter = new Printer(ppm); // Create printer with ppm speed
        Queue<Task> printerQueue = new Queue<Task>(); // The printer queue
        int totalWaitTime = 0;
        int nTasks = 0;
        for (int tick = 0; tick < seconds; tick++) {
            // your code here
        }
    }

    private static boolean newPrintTask() {
        return (180 == ((int) (1 + 180 * Math.random())));
    }
}
```

```java
public class PQSim {
    public static void main(String[] args) {
        simulate(3600, 5);
    }
}
```