Trees, Binary Search Tree

Bryn Mawr College
CS206 Intro to Data Structures

Tree

• A tree consists of a set of nodes and a set of edges that connect pairs of nodes.
• Property: there is exactly one path (no more, no less) between any two nodes of the tree.
• A path is a connected sequence of zero or more edges.
• In a rooted tree, one distinguished node is called the root. Every node c, except the root, has exactly one parent node p, which is the first node traversed on the path from c to the root. c is p's child.
• The root has no parent.
• A node can have any number of children.
Rooted Tree Terminology

• A leaf is a node with no children.
• Siblings are nodes with the same parent.
• The ancestors of a node d are the nodes on the path from d to the root. These include d's parent, d's parent's parent, d's parent's parent's parent, and so forth up to the root. Note that d's ancestors include d itself. The root is an ancestor of every node in the tree.
• If a is an ancestor of d, then d is a descendant of a.
• The length of a path is the number of edges in the path.
• The depth of a node n is the length of the path from n to the root. (The depth of the root is zero.)

Rooted Tree Terminology (cont.)

• The height of a node n is the length of the path from n to its deepest descendant. (The height of a leaf is zero.)
• The height of a tree is the depth of its deepest node = height of the root.
• The subtree rooted at node n is the tree formed by n and its descendants.
• A binary tree is a tree in which no node has more than two children, and every child is either a left child or a right child, even if it is the only child its parent has.
Binary Trees

Rooted trees can also be defined recursively. Here is the definition of a binary tree:

- A **binary tree** T is a structure defined on a finite set of nodes that either
 - Contains no nodes, or
 - Is composed of three disjoint sets of nodes:
 - a **root** node,
 - a binary tree called the **left subtree** of T, and
 - a binary tree called the **right subtree** of T.

A Binary Tree

Every node in the binary tree is reachable from the root node by a unique path.
Examples

- A binary tree is
 - full if every node other than leaves has two children; (a), (b), (d)
 - complete if every level is completely filled; (a), (b)
 - nearly complete if every level except the last is completely filled, and all nodes are as far left as possible; (d)
 - balanced if the depth of left and right subtrees of every node differ at most 1. (a), (b), (d)

Representing Rooted Trees

- A direct way to represent a tree is to use a data structure where every node has three references:
 - one reference to the object stored at that node,
 - one reference to the node's parent, and
 - one reference to the node's children.
- The child-sibling (CS) representation is another popular tree representation. It spurns separately encapsulated linked lists so that siblings are directly linked.
 - It retains the item and parent references, but instead of referencing a list of children, each node references just its leftmost child.
 - Each node also references its next sibling to the right.
 - These nextSibling references are used to join the children of a node in a singly-linked list, whose head is the node's firstChild.
Basic Definition of a CSNode

Here are the basic definitions, as well as the constructors. The rest of the code is posted separately.

```java
public class CSNode<E> {
    protected CSNode<E> parent; // not really needed
    protected CSNode<E> firstChild;
    protected CSNode<E> nextSibling;
    protected E data;
    public CSNode() {}
    public CSNode(E data) { this(data, null, null); }
    public CSNode(E data, CSNode<E> child, CSNode<E> sibling) {
        this.firstChild = child;
        this.nextSibling = sibling;
        this.data = data;
    }
}
```

Binary Search Trees

- The binary-search-tree property
 - If node y in left subtree of node x, then $key[y] \leq key[x]$.
 - If node y in right subtree of node x, then $key[y] \geq key[x]$.

- Binary search trees are an important data structure that supports dynamic set operations:
 - Search, Minimum, Maximum, Predecessor, Successor, Insert, and Delete.
 - Basic operations take time proportional to the height of the tree – $O(h)$.

- Q: Where is the minimum/maximum key?
Invalid BSTs

(a)
17
22 19

(b)
17
6 11

(c)
17
6 19
11 15

(d)
17
6 19
3 22

BST Operations

- Traversals
- Searches
- Insertion
- Deletion
Binary Tree Traversals

(a) Preorder traversal (b) Inorder traversal (c) Postorder traversal

Inorder Traversal of BST

Prints out keys in sorted order:
10, 20, 25, 30, 31, 35, 37, 50, 53, 55, 60, 62

Inorder-Tree-Walk (x)
1. if x ≠ NIL
2. then Inorder-Tree-Walk(left[x])
3. print key[x]
4. Inorder-Tree-Walk(right[x])
Querying a Binary Search Tree

- All dynamic-set search operations can be supported in $O(h)$ time.
- $h = \Theta(lg n)$ for a balanced binary tree (and for an average tree built by adding nodes in random order.)
- $h = \Theta(n)$ for an unbalanced tree that resembles a linear chain of n nodes in the worst case.

Tree Search

```
Tree-Search(x, k)
1. if x = NIL or k = key[x]
2. then return x
3. if k < key[x]
4. then return Tree-Search(left[x], k)
5. else return Tree-Search(right[x], k)
```

Running time $O(h)$ where h is tree height
Iterative Tree Search

Search for 37

Running time $O(h)$
where h is tree height

Iterative-Tree-Search(x, k)
1. while $x \neq \text{NIL}$ and $k \neq \text{key}[x]$
2. do if $k < \text{key}[x]$
3. then $x \leftarrow \text{left}[x]$
4. else $x \leftarrow \text{right}[x]$
5. return x

Finding Min & Max

• The binary-search-tree property guarantees that:
 o The minimum is located at the left-most node.
 o The maximum is located at the right-most node.

Tree-Minimum(x)
1. while $\text{left}[x] \neq \text{NIL}$
2. do $x \leftarrow \text{left}[x]$
3. return x

Tree-Maximum(x)
1. while $\text{right}[x] \neq \text{NIL}$
2. do $x \leftarrow \text{right}[x]$
3. return x

• Question: how long do they take?
Predecessor & Successor

The predecessor of x is the rightmost node in its left subtree.
The successor of x is the leftmost node in its right subtree.
The successor of the largest key is NIL.

Pseudo-code for Successor

```plaintext
Tree-Successor(x)
1. if right[x] ≠ NIL
2. then return Tree-Minimum(right[x])
3. y ← p[x]
4. while y ≠ NIL and x = right[y]
5. do x ← y
6. y ← p[y]
7. return y
```

- Code for predecessor is symmetric.
- Running time: \(O(h)\)
Insertion Example

Example: insert \(z = 32 \)

- Compare 32 and 25
- Traverse the right subtree

- Compare 32 and 35, traverse the left subtree

- Insert 32 as left child

BST Insertion : Pseudo-code

Tree-Insert(\(T, z \))

1. \(y \leftarrow \text{NIL} \)
2. \(x \leftarrow \text{root}[T] \)
3. while \(x \neq \text{NIL} \) do
4. \(y \leftarrow x \)
5. if \(\text{key}[z] < \text{key}[x] \) then
6. \(x \leftarrow \text{left}[x] \)
7. else \(x \leftarrow \text{right}[x] \)
8. \(p[z] \leftarrow y \)
9. if \(y = \text{NIL} \) then
10. \(\text{root}[t] \leftarrow z \)
11. else if \(\text{key}[z] < \text{key}[y] \) then
12. \(\text{left}[y] \leftarrow z \)
13. else \(\text{right}[y] \leftarrow z \)

- **Complexity:** \(O(h) \)
 - Initialization: \(O(1) \)
 - While loop (3-7): \(O(h) \) time
 - Insert the value (8-13): \(O(1) \)
Exercise: Sorting Using BST

Tree-Sort (A)
1. Let T be an empty BST
2. for $i \leftarrow 1$ to n
3. do Tree-Insert (T, $A[i]$)
4. Inorder-Tree-Walk($root[T]$)

- What are the worst case and best case running times?
- Worst case occurs when a linear chain of nodes results from the repeated insertion operation. $\Theta(n^2)$
- Best case occurs when a binary tree of height $\Theta(lg n)$ results from repeated insertion operation. $\Theta(n lg n)$

BST Deletion

Tree-Delete (T, x)

if x has no children
 ♦ case 0
 then remove x
if x has one child
 ♦ case 1
 then make $p[x]$ point to child
if x has two children (subtrees)
 ♦ case 2
 then swap x with its successor
 perform case 0 or case 1 to delete it

⇒ TOTAL: $O(h)$ time to delete a node