
1	

Trees, Binary Search Tree

Bryn Mawr College
CS206 Intro to Data Structures

Tree
•  A tree consists of a set of nodes and a set of edges that

connect pairs of nodes.
•  Property: there is exactly one path (no more, no less)

between any two nodes of the tree.
•  A path is a connected sequence of zero or more edges.
•  In a rooted tree, one distinguished node is called the

root. Every node c, except the root, has exactly one
parent node p, which is the first node traversed on the
path from c to the root. c is p's child.

•  The root has no parent.
•  A node can have any number of children.

2	

Rooted Tree Terminology
•  A leaf is a node with no children.
•  Siblings are nodes with the same parent.
•  The ancestors of a node d are the nodes on the path

from d to the root. These include d's parent, d's parent's
parent, d's parent's parent's parent, and so forth up to the
root. Note that d's ancestors include d itself. The root is
an ancestor of every node in the tree.

•  If a is an ancestor of d, then d is a descendant of a.
•  The length of a path is the number of edges in the path.
•  The depth of a node n is the length of the path from n

to the root. (The depth of the root is zero.)

Rooted Tree Terminology (cont.)
•  The height of a node n is the length of the path

from n to its deepest descendant. (The height of a
leaf is zero.)

•  The height of a tree is the depth of its deepest node
= height of the root.

•  The subtree rooted at node n is the tree formed by n
and its descendants.

•  A binary tree is a tree in which no node has more
than two children, and every child is either a left child
or a right child, even if it is the only child its parent
has.

3	

Binary Trees
Rooted trees can also be defined recursively. Here is the
definition of a binary tree:
•  A binary tree T is a structure defined on a finite set

of nodes that either
o Contains no nodes, or
o  Is composed of three disjoint sets of nodes:
•  a root node,
•  a binary tree called the left subtree of T, and
•  a binary tree called the right subtree of T.

A Binary Tree

A	

B	

F	 E	

C	

G	

A	 right	 le/	

G	

Null	

Null	

C	

E	 F	

B	

le/	 le/	

le/	 le/	

right	

right	 right	

right	 right	 p	 p	

p	

p	 p	

le/	

Key(value)

leaf

root

Every node in the binary tree is
reachable from the root node
by a unique path.

4	

Examples

•  A binary tree is
o  full if every node other than leaves has two children;
o  complete if every level is completely filled;
o  nearly complete if every level except the last is completely filled, and

all nodes are as far left as possible;
o  balanced if the depth of left and right subtrees of every node differ at

most 1.

(a), (b), (d)
(a), (b)

(a), (b), (d)

(d)

Representing Rooted Trees
•  A direct way to represent a tree is to use a data structure

where every node has three references:
o  one reference to the object stored at that node,
o  one reference to the node's parent, and
o  one reference to the node's children.

•  The child-sibling (CS) representation is another popular tree
representation. It spurns separately encapsulated linked lists
so that siblings are directly linked.
o  It retains the item and parent references, but instead of

referencing a list of children, each node references just its
leftmost child.

o  Each node also references its next sibling to the right.
o  These nextSibling references are used to join the children of a

node in a singly-linked list, whose head is the node's firstChild.

5	

Basic Definition of a CSNode
Here are the basic definitions, as well as the constructors. The
rest of the code is posted separately.
 public class CSNode<E> {

 protected CSNode<E> parent; // not really needed
 protected CSNode<E> firstChild;
 protected CSNode<E> nextSibling;
 protected E data;
 public CSNode(){}
 public CSNode(E data) { this(data, null, null); }
 public CSNode(E data, CSNode<E> child,
 CSNode<E> sibling) {
 this.firstChild = child;
 this.nextSibling = sibling;
 this.data = data;
 }

Binary Search Trees
•  The binary-search-tree property

o  If node y in left subtree of node x, then key[y] ≤ key[x].
o  If node y in right subtree of node x, then key[y] ≥ key[x].

•  Binary search trees are an important data
structure that supports dynamic set
operations:
o  Search, Minimum, Maximum, Predecessor, Successor,

Insert, and Delete.
o Basic operations take time proportional to the height of

the tree – O(h).
•  Q: Where is the minimum/maximum key?

6	

Invalid BSTs

BST Operations
•  Traversals
•  Searches
•  Insertion
•  Deletion

7	

Binary Tree Traversals

Inorder Traversal of BST
50

30

25 35

10

20

31 37

55

53 60

62

Prints out keys in sorted order:
10, 20, 25, 30, 31, 35, 37, 50, 53, 55, 60, 62

Inorder-Tree-Walk (x)
1. if x ≠ NIL
2. then Inorder-Tree-Walk(left[x])
3. print key[x]
4. Inorder-Tree-Walk(right[x])

8	

Querying a Binary Search Tree
•  All dynamic-set search operations can be supported

in O(h) time.
•  h = Θ(lg n) for a balanced binary tree (and for an

average tree built by adding nodes in random
order.)

•  h = Θ(n) for an unbalanced tree that resembles a
linear chain of n nodes in the worst case.

Tree Search
50

30

25 35

10

20

31

55

53 60

Search for 37 <

<

<

<

<

≥

≥

≥

≥

≥

≥ Running time O(h)
 where h is tree height

Tree-Search(x, k)
1. if x = NIL or k = key[x]
2. then return x
3. if k < key[x]
4. then return Tree-Search(left[x], k)
5. else return Tree-Search(right[x], k)

62
37

9	

Iterative Tree Search
50

30

25 35

10

20

31

55

53 60

Search for 37 <

<

<

<

<

≥

≥

≥

≥

≥

≥ Running time O(h)
 where h is tree height

62
37

Iterative-Tree-Search(x, k)
1. while x ≠ NIL and k ≠ key[x]
2. do if k < key[x]
3. then x ← left[x]
4. else x ← right[x]
5. return x

Finding Min & Max
•  The binary-search-tree property guarantees that:

o  The minimum is located at the left-most node.
o  The maximum is located at the right-most node.

o Question: how long do they take?

Tree-Minimum(x) Tree-Maximum(x)
1. while left[x] ≠ NIL 1. while right[x] ≠ NIL
2. do x ← left[x] 2. do x ← right[x]
3. return x 3. return x

10	

Predecessor & Successor

The predecessor of x is
the rightmost node in
its left subtree

The successor of x
is the leftmost node
in its right subtree

x

10, 20, 23, 25, 30, 31, 35, 37, 50, 53, 55, 60, 62

y

The successor of y is lowest
ancestor whose left child
is y or an ancestor of y

no right subtree

50

30

25 35

10

20

31 37

55

53 60

62

23

The successor of the
largest key is NIL

Pseudo-code for Successor

•  Code for predecessor is symmetric.
•  Running time: O(h)

Tree-Successor(x)
1. if right[x] ≠ NIL
2. then return Tree-Minimum(right[x])
3. y ← p[x]
4. while y ≠ NIL and x = right[y]
5. do x ← y
6. y ← p[y]
7. return y

11	

Insertion Example

32

35

12

20

25

40

Example: insert z = 32

25

40

20

12

35

x Compare 32 and 25
traverse the right subtree

Compare 32 and
35, traverse the
left subtree insert 32 as

left child

40

35

12

20

25

x

y
y

z

BST Insertion : Pseudo-code
•  Beginning at root of the tree,

trace a downward path,
maintaining two pointers.
o  Pointer x: traces the downward path.
o  Pointer y: “trailing pointer” to keep track

of parent of x.

•  Traverse the tree downward by
comparing the value of node at x
with key[z], and move to the left
or right child accordingly.

•  When x is NIL, it is at the
correct position for node z.

•  Compare z’s value with y’s
value, and insert z at either y’s
left or right, appropriately.

•  Complexity: O(h)
o  Initialization: O(1)
o  While loop (3-7) : O(h) time
o  Insert the value (8-13) : O(1)

Tree-Insert(T, z)
1.  y ← NIL
2.  x ← root[T]
3.  while x ≠ NIL
4.  do y ← x
5.  if key[z] < key[x]
6.  then x ← left[x]
7.  else x ← right[x]
8.  p[z] ← y
9.  if y = NIL
10.  then root[t] ← z
11.   else if key[z] < key[y]
12.  then left[y] ← z
13.  else right[y] ← z

12	

Exercise: Sorting Using BST

•  What are the worst case and best case running times?
•  Worst case occurs when a linear chain of nodes results from the

repeated insertion operation. Θ(n2)
•  Best case occurs when a binary tree of height Θ(lgn) results from

repeated insertion operation. Θ(nlgn)

Tree-Sort (A)
1. Let T be an empty BST
2. for i ← 1 to n
3. do Tree-Insert (T, A[i])
4. Inorder-Tree-Walk(root[T])

BST Deletion

if x has no children ♦ case 0
 then remove x
if x has one child ♦ case 1

 then make p[x] point to child
if x has two children (subtrees) ♦ case 2
 then swap x with its successor
 perform case 0 or case 1 to delete it

⇒ TOTAL: O(h) time to delete a node

Tree-Delete (T, x)

