

Tree

- A tree consists of a set of nodes and a set of edges that connect pairs of nodes.
- Property: there is exactly one path (no more, no less) between any two nodes of the tree.
- A path is a connected sequence of zero or more edges.
- In a rooted tree, one distinguished node is called the root. Every node c, except the root, has exactly one parent node p , which is the first node traversed on the path from c to the root. c is p's child.
- The root has no parent.
- A node can have any number of children.

Rooted Tree Terminology

- A leaf is a node with no children.
- Siblings are nodes with the same parent.
- The ancestors of a node d are the nodes on the path from d to the root. These include d's parent, d's parent's parent, d's parent's parent's parent, and so forth up to the root. Note that d's ancestors include d itself. The root is an ancestor of every node in the tree.
- If a is an ancestor of d, then d is a descendant of a.
- The length of a path is the number of edges in the path.
- The depth of a node n is the length of the path from n to the root. (The depth of the root is zero.)

Rooted Tree Terminology (cont.)

- The height of a node n is the length of the path from n to its deepest descendant. (The height of a leaf is zero.)
- The height of a tree is the depth of its deepest node $=$ height of the root.
- The subtree rooted at node n is the tree formed by n and its descendants.
- A binary tree is a tree in which no node has more than two children, and every child is either a left child or a right child, even if it is the only child its parent has.

Binary Trees

Rooted trees can also be defined recursively. Here is the definition of a binary tree:

- A binary tree T is a structure defined on a finite set of nodes that either
- Contains no nodes, or
- Is composed of three disjoint sets of nodes:
- a root node,
- a binary tree called the left subtree of T , and
- a binary tree called the right subtree of T.

