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Applications of  Stacks 
 

Based on the notes from David Fernandez-Baca and Steve Kautz 

Bryn Mawr College 
CS206 Intro to Data Structures 

App1: Verifying Matched Parentheses 
•  Verifying whether an string of  parentheses is well-

formed.  
o “{[(){[]}]()}”  -- well-formed  
o “{[]}[]]()}”  -- not well-formed 

•  More precisely, a string γ of  parentheses is well-
formed if  either γ is empty or γ has the form 

(α)β         [α]β      or     {α}β  
where α and β are themselves well-formed strings 
of  parentheses. This kind of  recursive definition 
lends itself  naturally to a stack-based algorithm.  
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Verifying Matched Parentheses (cont.) 
•  Idea: to check a String like "{[(){[]}]()}", scan it 

character by character.  
o When you encounter a lefty— '{', '[', or '(' — push it 

onto the stack.  
o When you encounter a righty, pop its counterpart 

from atop the stack, and check that they match.  
o  If  there is a mismatch or exception, or if  the stack is 

not empty when you reach the end of  the string, the 
parentheses are not properly matched.  

o Detailed code is posted separately.  

App2: Arithmetic Expressions  
Infix notation:  
•  Operators are written between the operands they act on; 

e.g., “2+2”. 
•  Parentheses surrounding groups of  operands and 

operators are used to indicate the intended order in 
which operations are to be performed.  

•  In the absence of  parentheses, precedence rules 
determine the order of  operations.  

E.g., Because “-” has lower precedence than “*”, the infix 
expression “3-4*5” is evaluated as “3-(4*5)”, not as 
“(3-4)*5”. If  you want it to evaluate the second way, you 
need to parenthesize.  
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Arithmetic Expressions (cont.) 
Postfix notation (a.k.a. Reverse Polish Notation (RPN)) 
•  Operators follow their operands, e.g., adding three 

and four is written as “3 4 +” rather than “3+4”. 
•  If  there are multiple operations, the operator is given 

immediately after its second operand; so the 
expression written “3 - 4 + 5” in infix notation 
would be written “3 4 - 5 +” in RPN: first subtract 4 
from 3, then add 5 to that.  

Advantage of  Postfix Notation 
The postfix notation obviates the need for parentheses that 
are required by infix.  
•  With infix notation, “3-4*5” can be written as “3-(4*5)”, 

that means something quite different from “(3-4)*5”.   

•  In postfix, the former is written as “3 4 5 * -”, which 
unambiguously means “3 (4 5 *) –”, and the latter is 
written as “3 4 – 5 *”, which unambiguously means “(3 4 
-) 5 *”.  

•  Postfix notation is easier to parse by computer than infix 
notation, but many programming languages use infix due 
to its familiarity.  
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App2.1: Evaluating Postfix Expressions  
•  Interpreters of  RPN are often stack-based.  
•  General idea:  

o Operands are pushed onto a stack, and when an 
operation is performed, its operands are popped from 
a stack and its result pushed back on.  

o At the end, the value of  the postfix expression is on 
the top of  the stack.  

•  Since all the needed stack operations take constant 
time, and the evaluation algorithm is quite simple, 
RPN expressions can be evaluated quickly and easily.  

Evaluating Postfix Expressions (cont.) 
We start with an empty stack and scan the postfix 
expression from left to right.  
•  If  the next item is a number, push it onto the stack.  
•  If  the next item is an operator, Op, do the following:  

o Pop two items right and left off  the stack.  
o Evaluate (left Op right) and push the value back onto 

the stack.  

•  When we reach the end of  the expression, we pop 
off  the single remaining from the stack. This is the 
value of  the expression.  
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We can encounter two kinds of  errors:  
•  More than one operand is left on the stack at the end of  

the scan.  
This means that the expression had too many operands.  

•  There are fewer than two operands on the stack when 
scanning an operator.  
This means that the expression has too many operators.  

Since the work is O(1) per item (i.e., operand or operator) in 
the expression, the total time complexity is O(n), where n is 
the number of  items.  
Example: Do “7 11 – 2 * 3 + ”on the board.  
Detailed code is posted separately.  

Evaluating Postfix Expressions (cont.) 

App2.2: Infix to Postfix Conversion 
Evaluating infix expressions is non-trivial for several 
reasons:  
•  Operators have different precedences:  
            ( ) > ^ > * = % = / > + = – 
•  Some operators are left associative: +, –, /, %  
•  One operator is right associative: ^  
For example, expression 2^7^6 + (3 – 2 * 4) % 5 is 
evaluated as: 2^(7^6) + ((3 – (2 * 4)) % 5)  
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Algorithm – the Simple Case 
We begin with the simpler case where all the operators 
are left associative and there are no parentheses. Also, 
for the time being, ignore the possibility of  errors.  
•  The algorithm uses an operator stack, opStack, to 

temporarily store operators awaiting their right-hand-
side operand, and to help manage the order of  
precedence.  

•  The input infix expression is scanned from left to 
right. Suppose ρ is the item that is currently being 
scanned; ρ can be either an operand or an operator.  

Algorithm – the Simple Case (cont.) 
•  If  ρ is an operand, append it to the postfix expression.  
•  Ifρis an operator. 

while !opStack.isEmpty() &&  
                   prec(ρ) ≤ prec(opStack.peek()) { 
  σ = opStack.pop()  
      append σ to postfix  
} 
opStack.push(ρ)  

When there are no more items to scan, pop off  the 
operators from the stack, appending them to the postfix as 
you do so.  
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Example: a+b×c 
  a+b×c a+b×c a+b×c 

Operator stack:          +          + 

Postfix: a a ab 

a+b×c a+b×c a+b×c_ a+b×c_ 

Operator stack: ×          ×          

+ + + 

Postfix: ab abc abc× abc×+ 

What would have happened if  the input expression 
had been a×b+c? or a/b×c? 

Example: a×b/c+d 
  a×b/c+d a×b/c+d a×b/c+d a×b/c+d 

Operator stack: 

         ×          × / 

Postfix: a a ab ab× 

a×b/c+d a×b/c+d a×b/c+d a×b/c+d_ 

Operator stack:                   

/ + + 

Postfix: ab×c ab×c/ ab×c/d ab×c/d+ 
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Infix to Postfix Conversion:  
The General Case 

The previous algorithm does not handle right-associative 
operators and parentheses. To fix this, we use a trick:  
Each operator (including parentheses) will have two, possibly 
different, precedences, depending on whether it is being scanned 
as part of  the input infix expression or it is already on the stack.  
 Symbol Input Precedence Stack Precedence 

+ − 1 1 

× / % 2 2 

^ 4 3 

( 5 -1 

) 0 0 

The General Case 
Now, in the algorithm, we replace the comparison  

prec(ρ) ≤ prec(opStack.peek())  
by 

inputPrec(ρ) ≤ stackPrec(opStack.peek())  
 
The revised precedence rules allow us to handle the right- 
associative “^” operator: Since the input precedence of  “^” 
is higher than its stack precedence, if  there are two 
successive “^” operators, they will both be pushed on the 
stack.  
For example, consider the expression “a^b^c”. This must 
be evaluated as “a^(b^c)”, not as “(a^b)^c”. That is, the 
postfix equivalent is “abc^^”, not “ab^c^”.  
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Algorithm – The General Case 
As the expression is scanned, do the following:  
•  If  we encounter a new operand, append it to the postfix 

expression.  
•  If  the next term,ρ, is an operator or a“(”, do the following:  

while (!opStack.isEmpty() 
          && inputPrec(ρ) ≤ stackPrec(opStack.peek()) {  
    σ = opStack.pop()        
    append σ to postfix  
}  
opStack.push(ρ)  

•  If  the input is“)”, pop all operators from the stack until “(” 
and write them to the postfix string. Pop “(”.  

When there are no more items to scan, pop off  the operators 
from the stack, appending them to the postfix as you do so.  

Example: “a^b^c” 
  a^b^c a^b^c a^b^c 

Operator stack:          ^          ^ 

Postfix: a a ab 

a^b^c a^b^c a^b^c_ a^b^c_ 

Operator stack: ^          ^          

^ ^ ^ 

Postfix: ab abc abc^ abc^^ 

i_prec(^) = 4 > 3 = s_prec(^) è push ^,  
so it will be popped before ^. 
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Handling Parentheses 
The trick also allows us to handle parentheses:  
•  The input precedence of  a left parenthesis is 5, 

which is higher than that of  any operator.  
•  Thus, all operators on the stack will remain there, 

and the “(” will be pushed on top of  them.  
•  This makes sense, because a new subexpression is 

beginning, which has to be evaluated before all the 
operators on the stack. When a matching “)” is 
found, all operands on the stack down to the 
corresponding “(” will be popped.  

Example: a×(b+c) 
  a×(b+c) a×(b+c) a×(b+c) a×(b+c) 

Operator stack: ( ( 

         ×          × × 

Postfix: a a a ab 

a×(b+c) a×(b+c) a×(b+c) a×(b+c)_ 

+ + 

Operator stack: (          (          ( 

× × × 

Postfix: ab abc abc+ abc+× 

i_prec(+) = 1 > -1 = s_prec(() è push +. ( stays on stack. 

i_prec(() = 5 > 2 = s_prec(×) è push (. Now s_prec(() = -1. 

) found: 
pop 

everything 
off  stack 
until (. 


