
1	

Applications of Stacks

Based on the notes from David Fernandez-Baca and Steve Kautz

Bryn Mawr College
CS206 Intro to Data Structures

App1: Verifying Matched Parentheses
•  Verifying whether an string of parentheses is well-

formed.
o “{[(){[]}]()}” -- well-formed
o “{[]}[]]()}” -- not well-formed

•  More precisely, a string γ of parentheses is well-
formed if either γ is empty or γ has the form

(α)β [α]β or {α}β
where α and β are themselves well-formed strings
of parentheses. This kind of recursive definition
lends itself naturally to a stack-based algorithm.

2	

Verifying Matched Parentheses (cont.)
•  Idea: to check a String like "{[(){[]}]()}", scan it

character by character.
o When you encounter a lefty— '{', '[', or '(' — push it

onto the stack.
o When you encounter a righty, pop its counterpart

from atop the stack, and check that they match.
o  If there is a mismatch or exception, or if the stack is

not empty when you reach the end of the string, the
parentheses are not properly matched.

o Detailed code is posted separately.

App2: Arithmetic Expressions
Infix notation:
•  Operators are written between the operands they act on;

e.g., “2+2”.
•  Parentheses surrounding groups of operands and

operators are used to indicate the intended order in
which operations are to be performed.

•  In the absence of parentheses, precedence rules
determine the order of operations.

E.g., Because “-” has lower precedence than “*”, the infix
expression “3-4*5” is evaluated as “3-(4*5)”, not as
“(3-4)*5”. If you want it to evaluate the second way, you
need to parenthesize.

3	

Arithmetic Expressions (cont.)
Postfix notation (a.k.a. Reverse Polish Notation (RPN))
•  Operators follow their operands, e.g., adding three

and four is written as “3 4 +” rather than “3+4”.
•  If there are multiple operations, the operator is given

immediately after its second operand; so the
expression written “3 - 4 + 5” in infix notation
would be written “3 4 - 5 +” in RPN: first subtract 4
from 3, then add 5 to that.

Advantage of Postfix Notation
The postfix notation obviates the need for parentheses that
are required by infix.
•  With infix notation, “3-4*5” can be written as “3-(4*5)”,

that means something quite different from “(3-4)*5”.

•  In postfix, the former is written as “3 4 5 * -”, which
unambiguously means “3 (4 5 *) –”, and the latter is
written as “3 4 – 5 *”, which unambiguously means “(3 4
-) 5 *”.

•  Postfix notation is easier to parse by computer than infix
notation, but many programming languages use infix due
to its familiarity.

4	

App2.1: Evaluating Postfix Expressions
•  Interpreters of RPN are often stack-based.
•  General idea:

o Operands are pushed onto a stack, and when an
operation is performed, its operands are popped from
a stack and its result pushed back on.

o At the end, the value of the postfix expression is on
the top of the stack.

•  Since all the needed stack operations take constant
time, and the evaluation algorithm is quite simple,
RPN expressions can be evaluated quickly and easily.

Evaluating Postfix Expressions (cont.)
We start with an empty stack and scan the postfix
expression from left to right.
•  If the next item is a number, push it onto the stack.
•  If the next item is an operator, Op, do the following:

o Pop two items right and left off the stack.
o Evaluate (left Op right) and push the value back onto

the stack.

•  When we reach the end of the expression, we pop
off the single remaining from the stack. This is the
value of the expression.

5	

We can encounter two kinds of errors:
•  More than one operand is left on the stack at the end of

the scan.
This means that the expression had too many operands.

•  There are fewer than two operands on the stack when
scanning an operator.
This means that the expression has too many operators.

Since the work is O(1) per item (i.e., operand or operator) in
the expression, the total time complexity is O(n), where n is
the number of items.
Example: Do “7 11 – 2 * 3 + ”on the board.
Detailed code is posted separately.

Evaluating Postfix Expressions (cont.)

App2.2: Infix to Postfix Conversion
Evaluating infix expressions is non-trivial for several
reasons:
•  Operators have different precedences:
 () > ^ > * = % = / > + = –
•  Some operators are left associative: +, –, /, %
•  One operator is right associative: ^
For example, expression 2^7^6 + (3 – 2 * 4) % 5 is
evaluated as: 2^(7^6) + ((3 – (2 * 4)) % 5)

6	

Algorithm – the Simple Case
We begin with the simpler case where all the operators
are left associative and there are no parentheses. Also,
for the time being, ignore the possibility of errors.
•  The algorithm uses an operator stack, opStack, to

temporarily store operators awaiting their right-hand-
side operand, and to help manage the order of
precedence.

•  The input infix expression is scanned from left to
right. Suppose ρ is the item that is currently being
scanned; ρ can be either an operand or an operator.

Algorithm – the Simple Case (cont.)
•  If ρ is an operand, append it to the postfix expression.
•  Ifρis an operator.

while !opStack.isEmpty() &&
 prec(ρ) ≤ prec(opStack.peek()) {
 σ = opStack.pop()
 append σ to postfix
}
opStack.push(ρ)

When there are no more items to scan, pop off the
operators from the stack, appending them to the postfix as
you do so.

7	

Example: a+b×c
 a+b×c a+b×c a+b×c

Operator stack: + +

Postfix: a a ab

a+b×c a+b×c a+b×c_ a+b×c_

Operator stack: × ×

+ + +

Postfix: ab abc abc× abc×+

What would have happened if the input expression
had been a×b+c? or a/b×c?

Example: a×b/c+d
 a×b/c+d a×b/c+d a×b/c+d a×b/c+d

Operator stack:

 × × /

Postfix: a a ab ab×

a×b/c+d a×b/c+d a×b/c+d a×b/c+d_

Operator stack:

/ + +

Postfix: ab×c ab×c/ ab×c/d ab×c/d+

8	

Infix to Postfix Conversion:
The General Case

The previous algorithm does not handle right-associative
operators and parentheses. To fix this, we use a trick:
Each operator (including parentheses) will have two, possibly
different, precedences, depending on whether it is being scanned
as part of the input infix expression or it is already on the stack.
 Symbol Input Precedence Stack Precedence

+ − 1 1

× / % 2 2

^ 4 3

(5 -1

) 0 0

The General Case
Now, in the algorithm, we replace the comparison

prec(ρ) ≤ prec(opStack.peek())
by

inputPrec(ρ) ≤ stackPrec(opStack.peek())

The revised precedence rules allow us to handle the right-
associative “^” operator: Since the input precedence of “^”
is higher than its stack precedence, if there are two
successive “^” operators, they will both be pushed on the
stack.
For example, consider the expression “a^b^c”. This must
be evaluated as “a^(b^c)”, not as “(a^b)^c”. That is, the
postfix equivalent is “abc^^”, not “ab^c^”.

9	

Algorithm – The General Case
As the expression is scanned, do the following:
•  If we encounter a new operand, append it to the postfix

expression.
•  If the next term,ρ, is an operator or a“(”, do the following:

while (!opStack.isEmpty()
 && inputPrec(ρ) ≤ stackPrec(opStack.peek()) {
 σ = opStack.pop()
 append σ to postfix
}
opStack.push(ρ)

•  If the input is“)”, pop all operators from the stack until “(”
and write them to the postfix string. Pop “(”.

When there are no more items to scan, pop off the operators
from the stack, appending them to the postfix as you do so.

Example: “a^b^c”
 a^b^c a^b^c a^b^c

Operator stack: ^ ^

Postfix: a a ab

a^b^c a^b^c a^b^c_ a^b^c_

Operator stack: ^ ^

^ ^ ^

Postfix: ab abc abc^ abc^^

i_prec(^) = 4 > 3 = s_prec(^) è push ^,
so it will be popped before ^.

10	

Handling Parentheses
The trick also allows us to handle parentheses:
•  The input precedence of a left parenthesis is 5,

which is higher than that of any operator.
•  Thus, all operators on the stack will remain there,

and the “(” will be pushed on top of them.
•  This makes sense, because a new subexpression is

beginning, which has to be evaluated before all the
operators on the stack. When a matching “)” is
found, all operands on the stack down to the
corresponding “(” will be popped.

Example: a×(b+c)
 a×(b+c) a×(b+c) a×(b+c) a×(b+c)

Operator stack: ((

 × × ×

Postfix: a a a ab

a×(b+c) a×(b+c) a×(b+c) a×(b+c)_

+ +

Operator stack: (((

× × ×

Postfix: ab abc abc+ abc+×

i_prec(+) = 1 > -1 = s_prec(() è push +. (stays on stack.

i_prec(() = 5 > 2 = s_prec(×) è push (. Now s_prec(() = -1.

) found:
pop

everything
off stack
until (.

