
1	

Stack and Recursion

Based on the notes from David Fernandez-Baca and Steve Kautz

Bryn Mawr College
CS206 Intro to Data Structures

The Java Virtual Machine
•  Java is designed to be platform-independent. To

achieve this, every class in a Java program is translated by
the compiler into a separate class file
(extension .class), written in an intermediate language
that is understood by the Java Virtual Machine (JVM).

•  The instructions of this language are called bytecodes,
because each of them typically occupies one byte.

•  JVM is an abstract machine that is (typically)
implemented in software, and is then executed by a
specific machine.

•  The JVM is stack-based.

2	

Program Execution
At runtime, the compiled class files are loaded
independently into the JVM and then execution begins. Java
stores stuff in two separate pools of memory:
•  The heap stores all objects, including all arrays, and all

class variables (i.e., those declared "static").
•  The stack stores all local variables, including all

parameters.
When a method is called, the Java Virtual Machine creates a
stack frame (also known as an activation record) for the
method and pushes it onto the stack. The stack frame stores
the parameters and local variables for that method.

Program Execution (cont.)
At any given moment, the state of a methodʼs execution
consists of:
•  a reference to the instruction stream for the method,

which we can think of as a byte array, along with an
index for the next instruction to be executed, called the
instruction pointer or IP,

•  an operand stack, along with an index representing the
top of the stack, called the stack pointer or SP, and

•  an area for local variables. The bytecodes refer to local
variables by index, starting at index 0. For a static method
with n parameters, local variables 0 through n – 1 are
always the parameters, in order of their appearance in the
method signature.

3	

Executing Recursive Program 1:
Binary Search Revisited

Recall the setting for binary search: We are given an int
array arr sorted from least to greatest —for instance,

arr = (-3, -2, 0, 0, 1, 5, 5).
We want to search the array for a given value v. If we
find v, we return its array index; otherwise, we return -1.

Base Cases
Binary search checks the middle array element first. If v
is lesser, we recursively search in the left half of the
array. If v is greater, we recursively search in the right
half. The recursion has two base cases.
•  If v equals the middle element, return its index; in

the example above, we return 4.
•  If we try to search a subarray of length zero, the

array does not contain v, and we return -1.
Since we are cutting the possibilities in half at each
step, the time complexity is O(log n).

4	

Implementation
private static int bsearch (int[] arr, int left, int right, int v) {
 if (left > right) { return -1; }
 int mid = (left + right) / 2;
 if (v == arr[mid]) { return mid; }
 else if (v < arr[mid]) { return bsearch(arr, left, mid-1, v); }
 else { return bsearch(arr, mid+1, right, v); }
}

public static int bsearch(int[] arr, int v) {
 return bsearch(arr, 0, arr.length-1, v);
}

Execution of a Search for v=1
-3 -2 0 0 1 5 5

Compare with 0

1 5 5

Compare with 5

1

5	

Stack and Heap
bsearch

left
right
mid

[4]
[4]
[4]

v

arr

[1]
[.]

bsearch
left

right
mid

[4]
[6]
[5]

v

arr

[1]
[.]

bsearch
left

right
mid

[0]
[6]
[3]

v

arr

[1]
[.]

bsearch
v [1] arr [.]

main
args [.]

-3 -2 0 0 1 5 5

[]

HEAP
ST

A
C

K

MergeSort(A, p, r):
 if(p< r)
 q=(p+r)/2
 MergeSort(A,p,q)
 MergeSort(A,q+1,r)
 Merge(A,p,q,r)

Executing Recursive Program 2:
Merge Sort

6	

