
1	

Stacks

Based on the notes from David Fernandez-Baca and Steve Kautz

Bryn Mawr College
CS206 Intro to Data Structures

Stacks
•  A stack is an access-restricted list. You may manipulate

only the item at the top of the stack:
o  push a new item onto the top of the stack

void push(E item): Adds an element to the top of stack.
o  pop the top item off the stack

E pop(): Removes and returns the top element of the stack.
Throws NoSuchElementException if the stack is empty

o  examine (peek at) the top item of the stack
E peek(): Returns the top element of the stack without
removing it. Throws NoSuchElementException if the stack is
empty

o  boolean isEmpty(): Return true if the stack is empty,
false otherwise

o  int size(): Returns the number of elements in the stack.

2	

Stack Example

b
a a

s.pop()
s

b

c
a

s.push(c) s.size()
2

d
c
a

s.push(d)

s.pop()x3 s.peek()
d

s.top()

N
oS

uc
hE

le
m

en
tE

xc
ep

tio
n

Java Implementation
It is easy to implement a stack as a Java List:

Stack Method List Method

push() add()
peek() get(size()-1)
pop() remove(size()-1)
isEmpty() isEmpty()
size() size()

3	

Java Implementation (cont.)
•  Java provides different implementations of the List

interface.
o ArrayList implements it as a resizable array, so all the

stack methods run in O(1) time.
(To be precise, add() runs in O(1) amortized time.)

o LinkedList implements List using doubly-linked lists.
In this case, the time complexities of all stack
operations is O(1) again.

Deque
In fact, Java has a legacy Stack class that implements all the
required methods. However, Oracle recommends using the more
modern Deque (for “doubly-ended queue) interface instead, as it
provides “a more complete and consistent set of LIFO stack
operations”.

Deque has many other methods. We will revisit this interface
when we study queues.
Two of the implementations of Deque are ArrayDeque and
LinkedList.

Stack Method Deque Method

push() addFirst()

pop() removeFirst()

peek() peekFirst()

4	

Direct Implementation

public interface PureStack<E> {
 void push(E item);
 E pop();
 E peek();
 boolean isEmpty();
 int size();
}

The Java implementations of stacks are fine for many
applications, but they do come loaded with unnecessary
features; e.g., indexOf() and listIterator(). In what
follows, we avoid these excess features, and use a more
“lightweight” implementation.

Implementing Stack - Array
5
4
3
2 C
1 B B B
0 A A A A

top 0 1 2 3 2

5	

Implementing Stack - Array
•  We need a data array, and an index top into data.

Entries data[0], ... , data[top-1] contain the elements
of the stack. A sequence of pushes and pops,
starting from an empty stack.

•  When there is no more space in the data array for
another push, just double the size of the array.

•  All operations take O(1) time (amortized, in the case
of push).

•  ArrayBasedStack.java is posted separately.

Implementing Stack – Linked List
•  Singly-linked lists work well for stacks, since we only

need access to the top.
•  The idea is simple: just use a sequence of linked

nodes, with a pointer top to the first node, which is
viewed as the top of the stack.

•  All operations take O(1) time.

6	

Implementing Stack – Linked List

A

B

A A A

C

B B

top

top

top top

top

LinkedStack.java is posted separately.

