
1	

Linked Lists

Based on the notes from David Fernandez-Baca and Steve Kautz

Bryn Mawr College
CS206 Intro to Data Structures

Linked Lists
•  Linked lists consist of linked nodes.
•  Each node is a simple container, holding some piece of

data, which has links(references) to one or more other
nodes.

•  There are many varieties of linked lists.
o  Forward links
o  Backward and forward links
o Multiple successors
o  “dummy” nodes
o  Circular links
o …

2	

Singly-Linked Lists
Each node has a reference to the next node in the list.

public class Node {
 public Object data;
 public Node next;
 public Node(Object data) { this.data = data; }
}

public class LinkList {
 private Node head;
 public LinkList() { head = null; }
 public boolean isEmpty() { return (head==null); }
 …
}

Singly-Linked Lists
We can build a list like this:

Node head = new Node("A");
head.next = new Node("B");
head.next.next = new Node("C");
head.next.next.next = new Node("D");

head A null

head A null B

head A null B C

head A B C null D

null-terminated
singly-linked list

3	

Access Elements in the List
We can access any element by starting at head:
 System.out.println(head.data);

System.out.println(head.next.data);
System.out.println(head.next.next.data);
System.out.println(head.next.next.next.data);

We can also loop through the list using a temporary variable:
 Node current = head;

while (current != null) {
 System.out.println(current.data);
 current = current.next;
}

Change Reference
Suppose we do:

head.next.next = head.next.next.next;

The result is:

head A B C null D

This effectively removes the node containing “C” from
the list. Since C is no longer referenced, it becomes
“garbage,” which is eventually reclaimed by Javaʼs
garbage collector.
What happens if we do head = null?

4	

Doubly-Linked Lists
•  Limitation of singly-linked lists

o  cannot quickly access the predecessor of the current
element

o difficult to delete this element
o  can only iterate in one direction

•  In doubly-linked lists, nodes have backward links
as well as forward links.

•  Cost: small amount of memory.

A

head

null

head

null null
A null B C D null

head

Practice 1: Using Doubly-Linked Lists to

Implement the Collection Class
public class DoublyLinkedCollection<E> extends
 AbstractCollection<E> {
 private Node head = null;
 private int size = 0;
 private class Node {
 public E data;
 public Node next;
 public Node previous;
 public Node(E data, Node next, Node previous) {
 this.data = data;
 this.next = next;
 this.previous = previous;
 }
 }

5	

public boolean add(E item)
 @Override
 public boolean add(E item) {
 // add at beginning
 Node temp = new Node(item, head, null);
 // special case for empty or nonempty list
 if (head != null) { head.previous = temp; }
 head = temp;
 ++size;
 return true;
 }
 @Override
 public int size() { return size; }

Since this is a collection, we don’t need to worry about
maintaining order. Thus, we put new elements at the
beginning of the chain.

Iterator for DoublyLinkedCollection
•  We implement iterators through an inner class called

LinkedIterator. The iterator() method is then
implemented as follows.

•  Idea: use a Node variable to keep track of the next
node to examine.

 @Override
 public Iterator<E> iterator() {
 return new LinkedIterator();
 }

6	

LinkedIterator
•  To keep track of the next node to examine, an

iterator will have a cursor field (of type Node) that
runs through the list.
o  If the list is empty or there are no more elements,

cursor is null.
o Otherwise, cursor points to the next element to be

returned by next().

o Thus, the proper initial value for cursor is head.

Implementing LinkedIterator
 private class LinkedIterator implements Iterator<E> {
 private Node cursor;
 public LinkedIterator() { cursor = head; }
 @Override
 public boolean hasNext() { return cursor != null; }
 @Override
 public E next() { //first attempt
 if (!hasNext()) throw new NoSuchElementException();
 E ret = cursor.data;
 cursor = cursor.next;
 return ret;
 }

Since LinkedIterator is an inner class within
DoublyLinkedCollection, we can refer to the type variable E.

7	

Implementing remove()
•  To implement remove(), we need to maintain additional

state information, so that an exception is raised if we
invoke the method without previously calling next().

•  It is not enough to keep a boolean canRemove state as
we did for the array-based collection because we need to
update links.
o  E.g., when we get to the end of the list, cursor is null.

•  Thus, we maintain a Node variable pending that
references the node whose removal is “pending”.
o  pending is non-null, remove() will delete the node that

pending refers to.
o  pending is null, we cannot do a remove().

next()

 @Override
 public E next() {
 if (!hasNext())
 throw new NoSuchElementException();
 pending = cursor;
 cursor = cursor.next;
 return pending.data;
 }

8	

remove()
 @Override
 public void remove() {
 if (pending == null) throw new IllegalStateException();
 // unlink pending node
 if (pending.previous != null) {
 pending.previous.next = pending.next;
 }
 if (pending.next != null) {
 pending.next.previous = pending.previous;
 }

 // if we're deleting the head, update head reference
 if (pending == head) { head = pending.next; }
 --size; pending = null;
 }
}

