
1	

Wild Cards and Bounds

Based on the notes from David Fernandez-Baca and Steve Kautz

Bryn Mawr College
CS206 Intro to Data Structures

Two Ways to Compare Objects
Generic sorting methods typically come in one of two forms,
which correspond to two ways to compare objects in Java.
•  For an existing class Foo, we can create an implementation

of Comparator<Foo> and override the compare() method.
Comparator<? super T>

•  If we are starting from scratch to create a class, say T, we
can endow T with a "natural" ordering by having T
implement the Comparable<T> interface, and then
overriding the compareTo() method.
<T extends Comparable<? super T>>

2	

The Meaning of Comparator<? super T>
Suppose we need a version of selectionSort that works for any
type T, by using an external Comparator supplied by the caller.

//first attempt, doesn’t work.
public static<T> void selectionSort(T[] arr,
 Comparator<T> comp) { … }
Suppose you have:
•  defined Vehicle class
•  created VehicleComparator implementing

Comparator<Vehicle>
which compares vehicles by price

•  created Truck extends Vehicle
•  Truck[] arr; VehicleComparator myComp;

selectionSort(arr, myComp); //Incorrect! Why?

T in selectionSort is
inferred to be Truck,
but myComp
implements
Comparator<Vehicle>.

Solution: Wildcard
•  Goal: allow subclasses to use a comparison function that

was defined in a superclass.
•  Solution: use a wildcard to indicate that selectionSort

method can use not just a comparator for type T, but a
comparator defined for any supertype of T as well.

•  “? super T” means “an unknown supertype of T”
(possibly an interface, possibly T itself).

•  T is the lower bound for the unknown type.

//corrected
public static<T> void selectionSort(T[] arr,
 Comparator<? super T> comp) { … }

3	

The Meaning of
<T extends Comparable<? super T>>
If a type already implements the Comparable interface,
the caller does not have to supply a Comparator. Thus,
we would also like a method like this:
 //first attempt, doesn’t work.
public static<T> void selectionSort(T[] arr) { … }

Problem: To implement the method, we will have to
invoke compareTo() on elements of arr. But we cannot,
because the compiler has no way to know that elements
of type T implement the Comparable interface.

<T extends Comparable<? super T>>
Let’s try to put an upper bound on the type parameter to indicate that
the type T extends Comparable<T>. Then, within the method, we can
invoke compareTo() on elements of type T.

//second attempt, doesn’t work.
public static<T extends Comparable<T>>
 void selectionSort(T[] arr) { … }
Suppose you have:
•  declared class Vehicle implements Comparable<Vehicle> {...}
•  Created Truck extends Vehicle and a variable arr of Truck
Calling selectionSort(arr) does not compile because Truck does
not implement Comparable<Truck>, which is what we required
by using the upper bound “T extends Comparable<T>”. So, as
before, we have use “? super T” to allow for the fact that the
compareTo method was defined in a superclass.

4	

Rule of thumb:
•  If T is a type parameter and you write

Comparator<T>, there is a good chance you actually
want Comparator<? super T>.

•  If T is a type parameter and you write “T extends
Comparable<T>”, there is a good chance you want
“T extends Comparable<? super T>”.

<T extends Comparable<? super T>>

//success!
public static<T extends Comparable<? super T>>
 void selectionSort(T[] arr) { … }

Raw Types
•  Prior to the introduction of generic types, a class

such as ArrayList always just stored type Object.

ArrayList arr = new ArrayList();
arr.add(new Dog(“Rolf ”));
arr.add(new Retriever(“Clover”));
arr.add(new Volkswagen());
for (int i = 0; i < arr.size(); ++i) {
 Dog d = (Dog) arr.get(i); //need downcast
 d.speak();
}

It compiles, but gives you a type error
(ClassCastException) at runtime.

5	

Raw Types – cont.
•  As of 1.5, ArrayList is a generic class:

o public class ArrayList<E> extends AbstractList<E>

ArrayList<Dog> arr = new ArrayList<Dog>();
arr.add(new Dog(“Rolf ”));
arr.add(new Retriever(“Clover”));
//arr.add(new Volkswagen()); //error is caught at compile time
for (int i = 0; i < arr.size(); ++i) {
 Dog d = arr.get(i); //no downcast
 d.speak();
}

You can still use ArrayList the old way, but it is called a
“raw type” and you get compiler warnings.

Erasure
•  The Java compiler uses the type arguments to check

whether you are doing anything that might cause a
type error.

•  It then erases the type arguments when it produces
the class file itself. What actually appears in the class
file is the upper bound of the type parameter, which
defaults to Object, unless specified otherwise.

•  The JDK docs call this phenomenon erasure; the
technical term for this is that generic types in Java are
“non-reified”.

6	

Erasure Example – Before Erasure
public class GenTest {
 public static void main(String[] args) {
 ArrayList<String> arr1 = new ArrayList<String>();
 ArrayList<Pet> arr2 = new ArrayList<Pet>();
 arr1.add("Hello, world!");
 arr2.add(new Dog("Rolf", null));
 String s = arr1.get(0);
 Pet p = arr2.get(0);
 System.out.println(s);
 System.out.println(p.getName());
 System.out.println(arr1.getClass() == arr2.getClass());
 }
}

Erasure Example – After Erasure
public class GenTest {
 public GenTest() {}
 public static void main(String[] args) {
 ArrayList arr1 = new ArrayList ();
 ArrayList arr2 = new ArrayList ();
 arr1.add("Hello, world!");
 arr2.add(new Dog("Rolf", null));
 String s = (String) arr1.get(0);
 Pet p = (Pet) arr2.get(0);
 System.out.println(s);
 System.out.println(p.getName());
 System.out.println(arr1.getClass() == arr2.getClass());
 }
}

7	

Erasure
•  Since the actual type information is not present in

the compiled class files, you generally cannot do
anything with a type parameter that would require
the type to be known at runtime.
o For example, statements such as new T(), new T[],

x instanceof T, will not compile.

