
1	

Sorting and Generic Methods

Based on the notes from David Fernandez-Baca and Steve Kautz

Bryn Mawr College
CS206 Intro to Data Structures

Selection Sort on an int Array (Java)
public static void selectionSort(int[] arr) {
 for (int i = 0; i < arr.length - 1; ++i) {
 int minIndex = i;
 for (int j = i+1; j < arr.length; ++j) {
 if (arr[j] < arr[minIndex]) {
 minIndex = j;
 }
 }
 int temp = arr[i];
 arr[i] = arr[minIndex];
 arr[minIndex] = temp;
 }
}

2	

What if we want to sort Strings alphabetically or Points
by their x-coordinates?

Comparing Objects in Java
•  Approach 1: If a type T implements Comparable,

exploit its natural ordering and use compareTo().
That is, to compare x with y, invoke x.compareTo(y).
o For example, to sort Strings instead of ints, we can

use the fact that String has a compareTo() method,
inherited from the Comparable interface.

•  Approach 2: Explicitly define a Comparator object
for T and use its compare method to determine the
relative order of two objects.
o For example, if comp is the comparator, we use

comp.compare(x,y).

3	

Using the Comparable Interface
•  The notion of a “natural” ordering is captured by the

Comparable interface.
•  Some familiar classes implement Comparable (read the

source code), e.g., String and Integer. In other words,
String and Integer have a natural ordering.

•  The compareTo method allows us to compare an object
of type T to another object of type T:
o  x.compareTo(y)<0 ≈ x<y
o  x.compareTo(y)=0 ≈ x=y
o  x.compareTo(y)>0 ≈ x>y

•  For other classes that we wish to be Comparable, we
have to write our own compareTo() method.

Selection Sort on a String Array (Java)

public static void selectionSort(String[] arr) {
 for (int i = 0; i < arr.length - 1; ++i) {
 int minIndex = i;
 for (int j = i+1; j < arr.length; ++j) {
 if (arr[j].compareTo(arr[minIndex])<0) {
 minIndex = j;
 }
 }
 String temp = arr[i];
 arr[i] = arr[minIndex];
 arr[minIndex] = temp;
 }
}

4	

Using the Comparator Interface
•  The Comparator interface defines a class of objects

that have a method to compare two objects of type
T.

public interface Comparable<T>{
 int compareTo(T rhs)
}

public interface Comparator<T> {
 int compare(T lhs, T rhs);
}

Behaviors of compareTo and Compare

Idea Using
a Comparable Type

Using
a Comparator Type

lhs < rhs lhs.compareTo(rhs) < 0 comp.compare(lhs, rhs) < 0

lhs > rhs lhs.compareTo(rhs) > 0 comp.compare(lhs, rhs) > 0

lhs == rhs lhs.compareTo(rhs) == 0 comp.compare(lhs, rhs) == 0

class LengthComparator implements Comparator<String> {
 public int compare(String lhs, String rhs) {
 return lns.length() – rhs.length();
 }
}

Not a generic class

5	

Selection Sort on a String Array (Java)

public static void selectionSort(String[] arr,
 Comparator<String> comp) {
 for (int i = 0; i < arr.length - 1; ++i) {
 int minIndex = i;
 for (int j = i+1; j < arr.length; ++j) {
 if (comp.compare(arr[j], arr[minIndex])<0) {
 minIndex = j; }
 }
 String temp = arr[i];
 arr[i] = arr[minIndex];
 arr[minIndex] = temp;
 }
}

To sort Strings by length, we would invoke:
selectionSort(arr, new LengthComparator());

Generic Sorting Methods
•  We can define a sorting method itself to be generic,

so that it takes a type argument as a parameter and
sorts arrays of objects of that type.

•  Instead of having different programs to sort
different types of objects, we would have one
program that handles multiple types.

•  Like a generic class, a generic method has a type
declaration block which defines one or more type
variables. It occurs directly before the return type

public static <T> void selectionSort(T[] arr . . .

6	

Sorting with the Comparator Interface
•  Generalizing what we did for String sorting, we can

sort objects in an generic array by passing a generic
comparator.

•  We need to assure Java that we are passing it a
comparator that is defined on any supertype of T.

•  We do so by giving a lower bound for the argument.
Comparator<? super T>

Selection Sort – a Generic Method
public static <T> void selectionSort(T[] arr,
 Comparator<? super T> comp) {
 for (int i = 0; i < arr.length - 1; ++i) {
 int minIndex = i;
 for (int j = i+1; j < arr.length; ++j) {
 if (comp.compare(arr[j], arr[minIndex])<0) {
 minIndex = j;
 }
 }
 T temp = arr[i];
 arr[i] = arr[minIndex];
 arr[minIndex] = temp;
 }
}

7	

Sorting with compareTo()
•  To write a generic sorter that uses the Comparable

interface, we must impose an upper bound on type
T, which states that T is guaranteed to implement the
Comparable interface.

•  Thus, we can call the compareTo() method on
objects of type T.

<T extends Comparable<? super T>>
•  Note: when dealing with type parameters, the

keyword “extends” is used for both classes and
interfaces.

Selection Sort – a Generic Method
public static <T extends Comparable<? super T>>
 void selectionSort(T[] arr) {
 for (int i = 0; i < arr.length - 1; ++i) {
 int minIndex = i;
 for (int j = i+1; j < arr.length; ++j) {
 if (arr[j].compare(arr[minIndex])<0) {
 minIndex = j;
 }
 }
 T temp = arr[i];
 arr[i] = arr[minIndex];
 arr[minIndex] = temp;
 }
}

8	

Note
Normally, when invoking generic methods, you donʼt
have to tell Java explicitly what the type of the
arguments is. Instead, the type is automatically inferred
from the compile-time types of the arguments.

