Simple Sorting

Bryn Mawr College
CS206 Intro to Data Structures

Bubble Sort

Start at the left end of the array and compare the
first two elements.

If the one on the right is bigger, you don’t do
anything; otherwise, swap them.

Move one position right.

Bubble Sort -Pseudocode

BubbleSort(int al])
int out, in

for out = alength-1to 1 //outer loop backward
for in = 0 to out //inner loop forward
if afin] > afin+1]
temp = alin]
alin] = afin+1]
a[in+1] = temp
end for
end for

Bubble Sort — Invariant & Complexity

* Invariants: conditions that remain unchanged as the
algorithm proceeds.

* Invariant for bubble sort algorithm:
o the data items to the right of out are sorted.
* Complexity:
o0 N-1 comparisons on the first pass,
0 N-2 on the second, and so on.
o N-1) + (N-2) + (N-3) + ... + 1 = N*(N-1)/2
o ON?)

Selection Sort

Start at position 0, making a pass through all the
items and picking (or selecting, hence the name of the
sort) the smallest one.

This smallest item is then swapped with the item on
the left end of the line, at position 0.

Now the leftmost item is sorted and won’t need to be
moved again.

Start at position 1, finding the minimum, and swap
with position 1.

Selection Sort - Pseudocode

SelectionSort(int A)
n=A.length
fori=0ton-1

min=i
for j=i+1ton-1
if Afj]<A[min]
min=j
end for
swap Ali] and A[min]
end for

Selection Sort — Invariant & Complexity

¢ Invariant:

o The data items with indices less than or equal to i are
always sorted.

* Complexity:
o N*(N-1)/2
o O(N?)
* Selection sort vs. bubble sort:

o O(N?) comparison performed
o O(N) swaps

Insertion Sort

* Idea:
fori=1ton—1:
insert A[i] in its proper place amongst A[0..i].
* Example
043212>3421>2341>1234
* Note that inserting A[i] in the correct place implies

shifting up some, maybe all, elements of A[0 .. 1—1]
to make room for Al[i].

Insertion Sort — Pseudocode

InsertionSort(int A)
n=A.length
forout=1ton-1
temp = Afout]
in = out
while in>0 and A[in-1]>=temp
Alin] = Alin - 1]

in--
end while
Alin] = temp
end for

[outer::nEIems

ICE N i 'W|II copy
outer to temp
temp=a[outer]
inner=outer

—><

[inner>0]

afinner-1]
>=temp

a[inner]=afinner-1]
--inner

_ _ |"Will copy
lemp to inner”

afinnerj=temp
outer++

“Have compared

~=|inner-1 and temp.

No copy necessary”

“Have compared
inner-1 and temp.
Will copy inner-1
to inner”

Insertion Sort — Invariant & Complexity

* Invariant:

o At the start of iteration i of the outer loop, subarray
A0..1-1] consists of the elements originally in A[0..i-1], but

in sorted ordet.

o At termination, i=n, so the invariant implies that subarray
AJ0.n—1] (Le, the whole array) consists of the elements
originally in A[O .n—1], but in sorted order. (correctness of

insertion sort)
* Complexity
o Outer loop: n iterations
o Inner loop: <= n iterations

o Per iteration: constant amount of work

o O(N?)

(Generics

* Generics enable #pes (classes and interfaces) to be
parameters when defining classes, interfaces and
methods.

* Benefits over non-generic code

o Stronger type checks at compile time.
o Elimination of casts.
* List list = new ArrayList();
list.add("hello™);
String s = (String) list.get(0);
* List<String> list = new ArrayList<String>();
list.add("hello");
String s = list.get(0); // no cast

o Enabling programmers to implement generic algorithms.

Generic Classes

* To define a generic class:

Type definition block defines variable E

public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, Serializable

* To use a generic class:

ArrayList<Dog> arr = new ArrayList<Dog>();

Defining Generic Classes and Interfaces

public class Pair<E> { public interface
private E first; Comparator<T>
ptivate E second; {
public Pair(E first, E second) { int compare(T lhs, T rhs);
this.first = first; }
this.second = second;
b
}

we can use the Pair class by providing a concrete type:
* Dog d = new Dog("Rolf", null);
Retriever r =new Retriever("Clover", null);
Pair<Pet> petPair = new Pair<Pet>(d, r);

Scope of Type Variables

* You can use a type variable throughout the class
(including in the class declaration itself).

* You cannot refer to it in a static method or declare
static variables of that type:

public class MyClass<T> implements Iterable<T>{
private T foo; //OK

// Compile error: “Cannot make a static
// teference to the non-static type T”
private static T bar;

}

Historical Notes

* Before generic types were introduced, a class such as
ArrayList always just stored type Object. You could
write dangerous code like this:

ArrayList arr = new ArrayList();
arradd(new Dog(“Rolf)); This code compiles,
arr.add(new Retriever(“Clover”)); but gives you
arr.add(new Volkswagen()); (ClassCastException)
for (inti = 0;1 < arr.size(); ++i) at runtime.
Dog d = (Dog) arr.get(i); / /need downcast
d.speak();
}

Historical Notes (cont.)

As of 1.5, ArrayList is a generic class. Thus, in the next example,
the compiler ensures that anything we add() to the list is
compatible with the type Dog:

ArrayList<Dog> arr = new ArrayList<Dog>();
arr.add(new Dog(“Rolf”));
arr.add(new Retriever(“Clover”));
/ /artr.add(new Volkswagen()); //Etror is caught at compile time
for (inti= 0;1 < art.size(); ++i) {
Dog d = arr.get(i); //no downcast
d.speak();

}

You can still use ArrayList the old way, but it is called a “raw
type” and you get compiler warnings.

