
1	

Simple Sorting

Bryn Mawr College
CS206 Intro to Data Structures

Bubble Sort
•  Start at the left end of the array and compare the

first two elements.
•  If the one on the right is bigger, you don’t do

anything; otherwise, swap them.
•  Move one position right.

2	

Bubble Sort -Pseudocode
BubbleSort(int a[])

 int out, in
 for out = a.length-1 to 1 //outer loop backward
 for in = 0 to out //inner loop forward
 if a[in] > a[in+1]
 temp = a[in]
 a[in] = a[in+1]
 a[in+1] = temp
 end for
 end for

Bubble Sort – Invariant & Complexity
•  Invariants: conditions that remain unchanged as the

algorithm proceeds.
•  Invariant for bubble sort algorithm:

o  the data items to the right of out are sorted.

•  Complexity:
o N-1 comparisons on the first pass,
o N-2 on the second, and so on.
o  (N–1) + (N–2) + (N–3) + ... + 1 = N*(N–1)/2
o O(N2)

3	

Selection Sort
•  Start at position 0, making a pass through all the

items and picking (or selecting, hence the name of the
sort) the smallest one.

•  This smallest item is then swapped with the item on
the left end of the line, at position 0.

•  Now the leftmost item is sorted and won’t need to be
moved again.

•  Start at position 1, finding the minimum, and swap
with position 1.

•  …

Selection Sort - Pseudocode
SelectionSort(int A)

 n=A.length
 for i = 0 to n – 1
 min=i
 for j=i+1 to n - 1
 if A[j]<A[min]
 min=j
 end for
 swap A[i] and A[min]
 end for

4	

Selection Sort – Invariant & Complexity
•  Invariant:

o The data items with indices less than or equal to i are
always sorted.

•  Complexity:
o N*(N–1)/2
o O(N2)

•  Selection sort vs. bubble sort:
o O(N2) comparison performed
o O(N) swaps

Insertion Sort
•  Idea:

for i = 1 to n − 1:
 insert A[i] in its proper place amongst A[0..i].

•  Example
o 4 3 2 1 à 3 4 2 1 à 2 3 4 1 à 1 2 3 4

•  Note that inserting A[i] in the correct place implies
shifting up some, maybe all, elements of A[0 .. i−1]
to make room for A[i].

5	

Insertion Sort – Pseudocode
InsertionSort(int A)

 n=A.length
 for out = 1 to n – 1
 temp = A[out]
 in = out
 while in>0 and A[in-1]>=temp
 A[in] = A[in - 1]
 in--
 end while
 A[in] = temp
 end for

Insertion Sort – Invariant & Complexity
•  Invariant:

o At the start of iteration i of the outer loop, subarray
A[0..i-1] consists of the elements originally in A[0..i-1], but
in sorted order.

o At termination, i=n, so the invariant implies that subarray
A[0..n−1] (i.e., the whole array) consists of the elements
originally in A[0..n−1], but in sorted order. (correctness of
insertion sort)

•  Complexity
o Outer loop: n iterations
o  Inner loop: <= n iterations
o  Per iteration: constant amount of work
o O(N2)

6	

Generics
•  Generics enable types (classes and interfaces) to be

parameters when defining classes, interfaces and
methods.

•  Benefits over non-generic code
o  Stronger type checks at compile time.
o  Elimination of casts.

•  List list = new ArrayList();
list.add("hello");
String s = (String) list.get(0);

•  List<String> list = new ArrayList<String>();
list.add("hello");
String s = list.get(0); // no cast

o  Enabling programmers to implement generic algorithms.

Generic Classes
•  To define a generic class:

Type definition block defines variable E

public class ArrayList<E> extends AbstractList<E>
 implements List<E>, RandomAccess, Cloneable, Serializable

•  To use a generic class:
ArrayList<Dog> arr = new ArrayList<Dog>();

7	

Defining Generic Classes and Interfaces

public class Pair<E> {
 private E first;
 private E second;
 public Pair(E first, E second) {
 this.first = first;
 this.second = second;
 }
}

we can use the Pair class by providing a concrete type:
•  Dog d = new Dog("Rolf", null);

Retriever r =new Retriever("Clover", null);
Pair<Pet> petPair = new Pair<Pet>(d, r);

public interface
Comparator<T>
{
 int compare(T lhs, T rhs);
}

Scope of Type Variables
•  You can use a type variable throughout the class

(including in the class declaration itself).
•  You cannot refer to it in a static method or declare

static variables of that type:

public class MyClass<T> implements Iterable<T>{
 private T foo; //OK

 // Compile error: “Cannot make a static
 // reference to the non-static type T”
 private static T bar;
}

8	

ArrayList arr = new ArrayList();
arr.add(new Dog(“Rolf ”));
arr.add(new Retriever(“Clover”));
arr.add(new Volkswagen());
for (int i = 0; i < arr.size(); ++i) {
 Dog d = (Dog) arr.get(i); //need downcast
 d.speak();
}

Historical Notes
•  Before generic types were introduced, a class such as

ArrayList always just stored type Object. You could
write dangerous code like this:

This code compiles,
but gives you

(ClassCastException)
at runtime.

Historical Notes (cont.)
As of 1.5, ArrayList is a generic class. Thus, in the next example,
the compiler ensures that anything we add() to the list is
compatible with the type Dog:

ArrayList<Dog> arr = new ArrayList<Dog>();
arr.add(new Dog(“Rolf ”));
arr.add(new Retriever(“Clover”));
//arr.add(new Volkswagen()); //Error is caught at compile time
for (int i = 0; i < arr.size(); ++i) {
 Dog d = arr.get(i); //no downcast
 d.speak();
}
You can still use ArrayList the old way, but it is called a “raw
type” and you get compiler warnings.

