Introduction to the Analysis
of Algorithms

Based on the notes from David Fernandez-Baca

Bryn Mawr College
CS206 Intro to Data Structures

Algorithm

An algorithm is a strategy (well-defined computational
procedure) for solving a problem, independent of
the actual implementation.

ARRAY EQUALITY

Input: Two arrays A and B, of the same length and
without duplicates.

Question: Do A and B contain the same elements?

Problem: Array Equality

Algorithm 1
for each position i in array A
if element A[i] does not appear in array B
return false
return true

Algorithm 2
Make a copy of both arrays and sort them
for each position i
if A[i] is different from B[]
return false

return true

Measurement of a Better Strategy

Which strategy is better? Some potential considerations
are:

* Speed?

* Memory consumption?

* Network bandwidth?

* Easiness of implementation?

* Reusability?

The most significant for us are the first two, and we will
concentrate on the first one.

Time Complexity

* The time complexity (or running time) of an
algorithm is a function that describes the number of
basic execution steps in terms of the imput size.

* The time complexity abstracts the components of an
algorithm's performance that depend on the
algorithm itself away from those components that
are machine- and implementation-dependent.

Example: Sequential Search

SEARCH

Input: An array A of length n and a value v
Problem: Determine whether A contains v.

1=0; assignment: 1 step
while i <n test: n + 1 steps
if Afi]|==v test: 1 step * n iterations of the loop
return true return: 1 step (only oncel)
it+ increment: n times

return false return: 1 step (only once!)

Example: Sequential Search

* Tor the worst case, the total number of steps is
T(n) =3n + 3.

* The execution time for an input of length n is
proportional to T(n).

* As n gets larger, the extra “+3” becomes relatively

insignificant, so the execution time is roughly
proportional to 3n.

* We can simplify this statement further and say that
T(n) is proportional to n or linear in n: f(n) = n.

* Worst-case time complexity of this algorithm is
O(n), or “big-O of n”.

Asymptotic upper bound: O-notation

Definition:
T(n) is O(f(n)) if and only if there exist positive
constants ¢ and N such that, for alln = N;
T(n) = c f(n)

T(n) is O(f(n)) if you can multiply f(n) by a
(possibly large) constant (c) so that, asymptotically
(as n shoots off to infinity), T(n) is completely
underneath c f(n).

Example

Claim 1. T(n) = 3n + 3 is O(n)

Proof:

Choose c=4 and N=3. Then, for any n=3,
3n+3<3n+n=<4n

Claim 2. T(n) = 42n + 17 is O(n)

Proof:

Choose c=43 and N=17. Then, for any n=17,
42n + 17 < 43n + n < 44n

General Principle

Fact 1. Every linear function f(n) = an + b is O(n).

Fact 2. When using-O notation we can ignore constant
(multiplicative) factors!

Example: T(n) = 109 n + 109 is O(n).
Set ¢ = 2*%109 and N = 1.

You can think of O(n) as the ¢ass of all functions that
do not grow any faster than a linear function, at least
for large values of n.

Array Equality, Revisited

Algorithm 1
for each position i in array A
if element A[i] does not appear in array B
return false
return true

For i = 0 to n-1, sequentially search for A[i] in array B.

Algorithm 1 Pseudocode

#Times performed

i=20 1
while i < n n+1
found = false n
j=0 n
while j < n nx(n+1) atmost
if a[il == bljl nxn at most
found = true nxi
break nxi1
++]j nxn at most
if !found n
return false 0
++1 n
return true 1

Total 3n2+8n+3 at most

Upper bound of Alg, 1

Claim 1. T(n) = O(n?
Proof:

Choose ¢=14(=3+8+3) and observe that as longas n = 1,
3n% +8n+3 < 3n® +8n? +3n% =14n?

* More generally, every quadratic function is O(n?).

* O(n?) is the class of all functions that asymptotically grow no faster
than quadratic functions.

* Note that 3n+3 is also O(n?). However, we are most interested in
describing an algorithm using the smallest (slowest growing) big-O
class that we can identify. So, it is more precise to say that 3n+3 is
O(n).

* Adding the extra constant-time steps does not add to the big-O
complexity.

Array Operations

* Insertion
* Searching
* Deletion

* Display

* Ordered array:

o int[] intArray = { 0, 3, 6,9, 12, 15, 18, 21, 24, 27 };
* Unordered array:

o int]] intArray = {18, 0, 3, 6, 24,9, 12, 15, 21, 27 };

Complexity

e Linear search

o O(N)

* Insertion in unordered array
o O(1)
* Insertion in ordered array

o O(N)

* Deletion in unordered array

o O(N)

* Deletion in ordered array

o O(N)

Binary Search (Ordered Arrays)

BinarySearch(A, v) // A must be sorted

n = A.size

left =0

right = n-1

while left<=right ™ Each iteration divides the search
mid = (left + right)/2 range [left.right] by 2.
if A[mld] ==V When does the loop terminate?

* we find what we are looking for,

=

return true
if v < Amid]

ﬂght = mid -1 Thus, the number of iterations is
else bounded by the number of times

left = mid +1 J wecan divide n by 2 before we get
1. This number is known as the log
base 2 of n.

* there are no more elements in the
search range.

return false

Logarithms

intn = 32;

while (n > 1) {n=1n/2; }
32=2%2%2%2%2 =25 it will take 5 iterations to get down
to 1.
The number 5 is called the /g base 2 of 32. It is the exponent
x such that 2¥ = 32.
For arbitrary n, the number of iterations equals the number x
of times we can divide n by half so that we get 1.

Thus, x is the exponent for which n(1/2)* = 1. Equivalently, x
is the number such that 2* =n; i.e.,x is the log base 2 of n.

In general x will not be a whole number but is never more
than 1 away from the number of iterations.

Subset Sum
SUBSET SUM

Input: An array A with n elements and a number K.
Question: Does A contain a subset elements that adds up
to exactly K?

Enumerate all subsets of the elements of A. For each
subset, see if its elements add up to K.

There are 2n subsets to enumerate. (Why?)
Therefore, the algorithm takes O(n*2") time.

Subset Sum is NP-complete, which means that it is likely 7oz
to have an efficient algorithm.

Asymptotic Analysis
Hierarchy of Function Classes

Constant, O(1), functions don’t grow at all.

Logarithmic, O(log n), functions are slower growing than
linear functions.

Liner, O(n), functions are slower growing than O(n log
n) functions.

O(n log n) functions are slower growing than quadratic
functions.

Polynomial functions, i.e., O(n*) functions where k is
constant.

Exponential functions, i.e., O(a") functions where a>1.

Big O times

|
I

0(N)

]

Number of steps
]

M~

™~

J O(log N)

L = o)

11
5 12 15 20 25

Number of items (N)

10

Clock rate:
seconds/day
seconds/year
size
10
20
30
50
100
1000
10000
100000
1000000
o

1,000,000,000
86400
31536000

log n

3ns
4 ns
5ns
6 ns
7 ns
10 ns
13 ns
17 ns
20 ns

n

0.00001 ms
0.00002 ms
0.00003 ms
0.00005 ms
0.00010 ms
0.00100 ms
0.01000 ms
0.10000 ms
1.00000 ms

nlogn

0.00003 ms
0.00009 ms
0.00015 ms
0.00028 ms
0.00066 ms
0.00997 ms
0.13288 ms
1.66096 ms
19.93157 ms

0.0001 ms
0.0004 ms
0.0009 ms
0.0025 ms
0.0100 ms
1.0000 ms
0.1000 s
10.0000 s
1000.0000 s

Example Execution Times

n"3

0.0010 ms
0.0080 ms
0.0270 ms
0.1250 ms
1.0000 ms
1000.0000 ms
1000.0000 s
11.5741 days
31.7098 years

2%n

0.00102 ms
1.04858 ms
10737 s

13.0312 days

4.0E+13 years

3.4E+284 years
#NUM!
#NUM!
#NUM!

Some General Observation

* O(1) denotes “constant time” — anything not dependent

on the input size.

* A polynomial is always big-O of its leading term.

* For a O(f) operation followed by an O(g) operation, you
can ignore the smaller one. E.g.,, O(n? + n) is O(n?).

* If a O(f) operation is repeated O(g) times, the total time
is O(f * g). E.g., if an O(n?) operation is petrformed O(n
log n) times, the whole thing is O(n’ log n).

* If the problem size n is decreased by a constant factor at
each step, the number of steps is O(log n).

11

