Introduction to the Analysis of Algorithms

Based on the notes from David Fernandez-Baca

Bryn Mawr College
CS206 Intro to Data Structures
-

Algorithm

- An algorithm is a strategy (well-defined computational procedure) for solving a problem, independent of the actual implementation.

ARRAY EQUALITY

Input: Two arrays A and B , of the same length and without duplicates.
Question: Do A and B contain the same elements?

Problem: Array Equality

Algorithm 1

for each position i in array A
if element $A[i]$ does not appear in array B return false
return true

Algorithm 2

Make a copy of both arrays and sort them
for each position i
if $A[i]$ is different from $B[i]$
return false
return true
-

Measurement of a Better Strategy

Which strategy is better? Some potential considerations are:

- Speed?
- Memory consumption?
- Network bandwidth?
- Easiness of implementation?
- Reusability?

The most significant for us are the first two, and we will concentrate on the first one.

Time Complexity

- The time complexity (or running time) of an algorithm is a function that describes the number of basic execution steps in terms of the input size.
- The time complexity abstracts the components of an algorithm's performance that depend on the algorithm itself away from those components that are machine- and implementation-dependent.

Example: Sequential Search

SEARCH
Input: An array A of length n and a value v
Problem: Determine whether A contains v.

Example: Sequential Search

- For the worst case, the total number of steps is $T(n)=3 n+3$.
- The execution time for an input of length n is proportional to $T(n)$.
- As n gets larger, the extra " +3 " becomes relatively insignificant, so the execution time is roughly proportional to $3 n$.
- We can simplify this statement further and say that $T(n)$ is proportional to n or linear in $n: f(n)=n$.
- Worst-case time complexity of this algorithm is $\mathrm{O}(\mathrm{n})$, or "big-O of n ".

Asymptotic upper bound: O-notation

Definition:
$\mathrm{T}(\mathrm{n})$ is $\mathrm{O}(\mathrm{f}(\mathrm{n}))$ if and only if there exist positive constants c and N such that, for all $\mathrm{n} \geq \mathrm{N}$,

$$
T(n) \leq \mathrm{c} f(\mathrm{n})
$$

$T(n)$ is $O(f(n))$ if you can multiply $f(n)$ by a (possibly large) constant (c) so that, asymptotically (as n shoots off to infinity), $\mathrm{T}(\mathrm{n})$ is completely underneath $\mathrm{c} f(\mathrm{n})$.

Example

Claim 1. $\mathrm{T}(\mathrm{n})=3 \mathrm{n}+3$ is $\mathrm{O}(\mathrm{n})$
Proof:
Choose $\mathrm{c}=4$ and $\mathrm{N}=3$. Then, for any $\mathrm{n} \geq 3$,

$$
3 n+3 \leq 3 n+n \leq 4 n
$$

Claim 2. $T(n)=42 n+17$ is $O(n)$
Proof:
Choose $\mathrm{c}=43$ and $\mathrm{N}=17$. Then, for any $\mathrm{n} \geq 17$,

$$
42 n+17 \leq 43 n+n \leq 44 n
$$

General Principle

Fact 1. Every linear function $f(n)=a n+b$ is $O(n)$.
Fact 2. When using-O notation we can ignore constant (multiplicative) factors!

Example: $T(n)=109 n+109$ is $O(n)$.
Set $\mathrm{c}=2 * 109$ and $\mathrm{N}=1$.

You can think of $\mathrm{O}(\mathrm{n})$ as the class of all functions that do not grow any faster than a linear function, at least for large values of n .

Array Equality, Revisited

```
Algorithm 1
    for each position i in array A
        if element A[i] does not appear in array B
            return false
        return true
```

For $\mathrm{i}=0$ to $\mathrm{n}-1$, sequentially search for $\mathrm{A}[\mathrm{i}]$ in array B .

Upper bound of Alg. 1

Claim 1. $\mathrm{T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{2}\right)$
Proof:

$$
\begin{aligned}
\text { Choose } \mathrm{c}= & 14(=3+8+3) \text { and observe that as long as } \mathrm{n} \geq 1, \\
& 3 \mathrm{n}^{2}+8 \mathrm{n}+3 \leq 3 \mathrm{n}^{2}+8 \mathrm{n}^{2}+3 \mathrm{n}^{2}=14 n^{2}
\end{aligned}
$$

- More generally, every quadratic function is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ is the class of all functions that asymptotically grow no faster than quadratic functions.
- Note that $3 \mathrm{n}+3$ is also $\mathrm{O}\left(\mathrm{n}^{2}\right)$. However, we are most interested in describing an algorithm using the smallest (slowest growing) big-O class that we can identify. So, it is more precise to say that $3 n+3$ is $\mathrm{O}(\mathrm{n})$.
- Adding the extra constant-time steps does not add to the big-O complexity.

Array Operations

- Insertion
- Searching
- Deletion
- Display
- Ordered array:
o int[] intArray $=\{0,3,6,9,12,15,18,21,24,27\} ;$
- Unordered array:
\circ int $[$ intArray $=\{18,0,3,6,24,9,12,15,21,27\} ;$

Complexity

- Linear search

○ $\mathrm{O}(\mathrm{N})$

- Insertion in unordered array

○ $\mathrm{O}(1)$

- Insertion in ordered array
- O(N)
- Deletion in unordered array - O(N)
- Deletion in ordered array - $\mathrm{O}(\mathrm{N})$

Binary Search (Ordered Arrays)

BinarySearch(A, v) / / A must be sorted
$\mathrm{n}=\mathrm{A}$. size
left $=0$
right $=\mathrm{n}-1$
while left<=right Each iteration divides the search
$\operatorname{mid}=($ left + right $) / 2$
if A [mid] $==\mathrm{v}$ return true

$$
\text { if } \mathrm{v}<\mathrm{A}[\mathrm{mid}]
$$

right $=$ mid -1
else
left $=$ mid +1
return false range [left..right] by 2.

When does the loop terminate?

- we find what we are looking for, or
- there are no more elements in the search range.
Thus, the number of iterations is bounded by the number of times we can divide n by 2 before we get 1. This number is known as the \log base 2 of n.

Logarithms

$$
\begin{aligned}
& \text { int } \mathrm{n}=32 ; \\
& \text { while }(\mathrm{n}>1)\{\mathrm{n}=\mathrm{n} / 2 ;\}
\end{aligned}
$$

- $32=2 * 2 * 2 * 2 * 2=2^{5}$, it will take 5 iterations to get down to 1 .
- The number 5 is called the \log base 2 of 32 . It is the exponent x such that $2^{x}=32$.
- For arbitrary n, the number of iterations equals the number x of times we can divide n by half so that we get 1 .
- Thus, x is the exponent for which $\mathrm{n}(1 / 2)^{\mathrm{x}}=1$. Equivalently, x is the number such that $2^{x}=n$; i.e., x is the log base 2 of n.
- In general x will not be a whole number but is never more than 1 away from the number of iterations.
-

Subset Sum

SUBSET SUM

Input: An array A with n elements and a number K .
Question: Does A contain a subset elements that adds up to exactly K?

- Enumerate all subsets of the elements of A. For each subset, see if its elements add up to K.
- There are 2 n subsets to enumerate. (Why?)
- Therefore, the algorithm takes $\mathrm{O}\left(\mathrm{n}^{*} 2^{\mathrm{n}}\right)$ time.
- Subset Sum is NP-complete, which means that it is likely not to have an efficient algorithm.

Asymptotic Analysis
 Hierarchy of Function Classes

- Constant, $\mathrm{O}(1)$, functions don't grow at all.
- Logarithmic, $\mathrm{O}(\log \mathrm{n})$, functions are slower growing than linear functions.
- Liner, $\mathrm{O}(\mathrm{n})$, functions are slower growing than $\mathrm{O}(\mathrm{n} \log$ n) functions.
- $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ functions are slower growing than quadratic functions.
- Polynomial functions, i.e., $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$ functions where k is constant.
- Exponential functions, i.e., $\mathrm{O}\left(\mathrm{a}^{\mathrm{n}}\right)$ functions where $\mathrm{a}>1$.

Example Execution Times

Some General Observation

- $\mathrm{O}(1)$ denotes "constant time" - anything not dependent on the input size.
- A polynomial is always big-O of its leading term.
- For a $O(f)$ operation followed by an $O(g)$ operation, you can ignore the smaller one. E.g., $\mathrm{O}\left(\mathrm{n}^{2}+\mathrm{n}\right)$ is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.
- If a $\mathrm{O}(\mathrm{f})$ operation is repeated $\mathrm{O}(\mathrm{g})$ times, the total time is $\mathrm{O}(\mathrm{f} \bullet \mathrm{g})$. E.g., if an $\mathrm{O}\left(\mathrm{n}^{2}\right)$ operation is performed $\mathrm{O}(\mathrm{n}$ $\log n)$ times, the whole thing is $\mathrm{O}\left(\mathrm{n}^{3} \log \mathrm{n}\right)$.
- If the problem size n is decreased by a constant factor at each step, the number of steps is $\mathrm{O}(\log \mathrm{n})$.

