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Introduction to the Analysis  
of  Algorithms  

 
Based on the notes from David Fernandez-Baca 

Bryn Mawr College 
CS206 Intro to Data Structures 

Algorithm 
•  An algorithm is a strategy (well-defined computational 

procedure) for solving a problem, independent of  
the actual implementation.  

ARRAY EQUALITY 
 
Input: Two arrays A and B, of  the same length and 
without duplicates. 
Question: Do A and B contain the same elements? 
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Problem: Array Equality 

Algorithm 1 
 for each position i in array A  
       if  element A[i] does not appear in array B  
             return false 
 return true  

Algorithm 2 
 Make a copy of  both arrays and sort them 
 for each position i  
       if  A[i] is different from B[i]  
             return false 
 return true  

Measurement of  a Better Strategy 
Which strategy is better? Some potential considerations 
are:  
•  Speed? 
•  Memory consumption? 
•  Network bandwidth? 
•  Easiness of  implementation? 
•  Reusability?  
The most significant for us are the first two, and we will 
concentrate on the first one.  
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Time Complexity 
•  The time complexity (or running time) of  an 

algorithm is a function that describes the number of  
basic execution steps in terms of  the input size.  

•  The time complexity abstracts the components of  an 
algorithm's performance that depend on the 
algorithm itself  away from those components that 
are machine- and implementation-dependent.  

Example: Sequential Search 
SEARCH 
 

Input: An array A of  length n and a value v  
Problem: Determine whether A contains v.  

i = 0;                         assignment: 1 step 
while i < n                test: n + 1 steps 
    if A[i]==v             test: 1 step * n iterations of  the loop  
         return true       return: 1 step (only once!)  
    i++                       increment: n times 
return false               return: 1 step (only once!)  
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Example: Sequential Search 
•  For the worst case, the total number of  steps is  

T(n) = 3n + 3. 
•  The execution time for an input of  length n is 

proportional to T(n).  
•  As n gets larger, the extra “+3” becomes relatively 

insignificant, so the execution time is roughly 
proportional to 3n.  

•  We can simplify this statement further and say that 
T(n) is proportional to n or linear in n: f(n) = n.  

•  Worst-case time complexity of  this algorithm is 
O(n), or “big-O of  n”.  

Asymptotic upper bound: O-notation 
Definition:  

T(n) is O(f(n)) if  and only if  there exist positive 
constants c and N such that, for all n ≥ N,  

T(n) ≤ c f(n)  

 
T(n) is O(f(n)) if  you can multiply f(n) by a 
(possibly large) constant (c) so that, asymptotically 
(as n shoots off  to infinity), T(n) is completely 
underneath c f(n).  
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Example 
Claim 1. T(n) = 3n + 3 is O(n) 
Proof:  
Choose c=4 and N=3. Then, for any n≥3,  

3n + 3 ≤ 3n + n ≤ 4n  
 
Claim 2. T(n) = 42n + 17 is O(n)  
Proof:  
Choose c=43 and N=17. Then, for any n≥17,  

42n + 17 ≤ 43n + n ≤ 44n  
 

General Principle 
Fact 1. Every linear function f(n) = an + b is O(n). 
Fact 2. When using-O notation we can ignore constant 
(multiplicative) factors!  
  
Example: T(n) = 109 n + 109 is O(n).  
Set c = 2∗109 and N = 1.  
 
You can think of  O(n) as the class of  all functions that 
do not grow any faster than a linear function, at least 
for large values of  n.  
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Array Equality, Revisited  

For i = 0 to n-1, sequentially search for A[i] in array B.  
 

Algorithm 1 
 for each position i in array A  
       if  element A[i] does not appear in array B  
             return false 
 return true  

Algorithm 1 Pseudocode 
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Upper bound of  Alg. 1 
Claim 1. T(n) = O(n2) 
Proof:  

Choose c=14(=3+8+3) and observe that as long as n ≥ 1, 
 3n2 +8n+3 ≤ 3n2 +8n2 +3n2 =14n2  

•  More generally, every quadratic function is O(n2).  
•  O(n2) is the class of  all functions that asymptotically grow no faster 

than quadratic functions.  
•  Note that 3n+3 is also O(n2). However, we are most interested in 

describing an algorithm using the smallest (slowest growing) big-O 
class that we can identify. So, it is more precise to say that 3n+3 is 
O(n).  

•  Adding the extra constant-time steps does not add to the big-O 
complexity.  

 
 
 
 

Array Operations 
•  Insertion  
•  Searching 
•  Deletion 
•  Display 

•  Ordered array:  
o  int[] intArray = { 0, 3, 6, 9, 12, 15, 18, 21, 24, 27 };  

•  Unordered array: 
o  int[] intArray = {18, 0, 3, 6, 24, 9, 12, 15, 21, 27 };  
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Complexity 
•  Linear search  

o O(N) 
•  Insertion in unordered array 

o O(1) 
•  Insertion in ordered array 

o O(N) 
•  Deletion in unordered array 

o O(N) 
•  Deletion in ordered array 

o O(N) 

Binary Search (Ordered Arrays) 
BinarySearch(A, v) // A must be sorted 

 n = A.size 
  left = 0 

 right = n-1 
 while left<=right 
  mid = (left + right)/2 
  if A[mid] == v 
   return true 
  if v < A[mid] 
   right = mid -1 
  else  
   left = mid +1 
 return false 

Each iteration divides the search 
range [left..right] by 2.  

When does the loop terminate?  
•   we find what we are looking for, or  
•  there are no more elements in the 

search range.  

Thus, the number of  iterations is 
bounded by the number of  times 
we can divide n by 2 before we get 
1. This number is known as the log 
base 2 of  n. 
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Logarithms 

•  32= 2 * 2 * 2 * 2 * 2 = 25, it will take 5 iterations to get down 
to 1.  

•  The number 5 is called the log base 2 of  32. It is the exponent 
x such that 2x = 32.  

•  For arbitrary n, the number of  iterations equals the number x 
of  times we can divide n by half  so that we get 1.  

•  Thus, x is the exponent for which n(1/2)x = 1. Equivalently, x 
is the number such that 2x =n; i.e.,x is the log base 2 of  n.  

•  In general x will not be a whole number but is never more 
than 1 away from the number of  iterations.  

int n = 32; 
while (n > 1) { n = n/2; } 

Subset Sum 

•  Enumerate all subsets of  the elements of  A. For each 
subset, see if  its elements add up to K.  

•  There are 2n subsets to enumerate. (Why?) 
•  Therefore, the algorithm takes O(n*2n) time.  
•  Subset Sum is NP-complete, which means that it is likely not 

to have an efficient algorithm.  

SUBSET SUM 
 
Input: An array A with n elements and a number K.    
Question: Does A contain a subset elements that adds up 
to exactly K? 
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Asymptotic Analysis 
Hierarchy of  Function Classes 

•  Constant, O(1), functions don’t grow at all. 
•  Logarithmic, O(log n), functions are slower growing than 

linear functions.  
•  Liner, O(n), functions are slower growing than O(n log 

n) functions.  
•  O(n log n) functions are slower growing than quadratic 

functions. 

•  Polynomial functions, i.e., O(nk) functions where k is 
constant. 

•  Exponential functions, i.e., O(an) functions where a>1. 

Big O times 
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Example Execution Times 

Some General Observation 
•  O(1) denotes “constant time” – anything not dependent 

on the input size. 
•  A polynomial is always big-O of  its leading term. 
•  For a O(f) operation followed by an O(g) operation, you 

can ignore the smaller one. E.g., O(n2 + n) is O(n2). 
•  If  a O(f) operation is repeated O(g) times, the total time 

is O(f  � g). E.g., if  an O(n2) operation is performed O(n 
log n) times, the whole thing is O(n3 log n). 

•  If  the problem size n is decreased by a constant factor at 
each step, the number of  steps is O(log n).  


