
1	

Introduction to the Analysis
of Algorithms

Based on the notes from David Fernandez-Baca

Bryn Mawr College
CS206 Intro to Data Structures

Algorithm
•  An algorithm is a strategy (well-defined computational

procedure) for solving a problem, independent of
the actual implementation.

ARRAY EQUALITY

Input: Two arrays A and B, of the same length and
without duplicates.
Question: Do A and B contain the same elements?

2	

Problem: Array Equality

Algorithm 1
 for each position i in array A
 if element A[i] does not appear in array B
 return false
 return true

Algorithm 2
 Make a copy of both arrays and sort them
 for each position i
 if A[i] is different from B[i]
 return false
 return true

Measurement of a Better Strategy
Which strategy is better? Some potential considerations
are:
•  Speed?
•  Memory consumption?
•  Network bandwidth?
•  Easiness of implementation?
•  Reusability?
The most significant for us are the first two, and we will
concentrate on the first one.

3	

Time Complexity
•  The time complexity (or running time) of an

algorithm is a function that describes the number of
basic execution steps in terms of the input size.

•  The time complexity abstracts the components of an
algorithm's performance that depend on the
algorithm itself away from those components that
are machine- and implementation-dependent.

Example: Sequential Search
SEARCH

Input: An array A of length n and a value v
Problem: Determine whether A contains v.

i = 0; assignment: 1 step
while i < n test: n + 1 steps
 if A[i]==v test: 1 step * n iterations of the loop
 return true return: 1 step (only once!)
 i++ increment: n times
return false return: 1 step (only once!)

4	

Example: Sequential Search
•  For the worst case, the total number of steps is

T(n) = 3n + 3.
•  The execution time for an input of length n is

proportional to T(n).
•  As n gets larger, the extra “+3” becomes relatively

insignificant, so the execution time is roughly
proportional to 3n.

•  We can simplify this statement further and say that
T(n) is proportional to n or linear in n: f(n) = n.

•  Worst-case time complexity of this algorithm is
O(n), or “big-O of n”.

Asymptotic upper bound: O-notation
Definition:

T(n) is O(f(n)) if and only if there exist positive
constants c and N such that, for all n ≥ N,

T(n) ≤ c f(n)

T(n) is O(f(n)) if you can multiply f(n) by a
(possibly large) constant (c) so that, asymptotically
(as n shoots off to infinity), T(n) is completely
underneath c f(n).

5	

Example
Claim 1. T(n) = 3n + 3 is O(n)
Proof:
Choose c=4 and N=3. Then, for any n≥3,

3n + 3 ≤ 3n + n ≤ 4n

Claim 2. T(n) = 42n + 17 is O(n)
Proof:
Choose c=43 and N=17. Then, for any n≥17,

42n + 17 ≤ 43n + n ≤ 44n

General Principle
Fact 1. Every linear function f(n) = an + b is O(n).
Fact 2. When using-O notation we can ignore constant
(multiplicative) factors!

Example: T(n) = 109 n + 109 is O(n).
Set c = 2∗109 and N = 1.

You can think of O(n) as the class of all functions that
do not grow any faster than a linear function, at least
for large values of n.

6	

Array Equality, Revisited

For i = 0 to n-1, sequentially search for A[i] in array B.

Algorithm 1
 for each position i in array A
 if element A[i] does not appear in array B
 return false
 return true

Algorithm 1 Pseudocode

7	

Upper bound of Alg. 1
Claim 1. T(n) = O(n2)
Proof:

Choose c=14(=3+8+3) and observe that as long as n ≥ 1,
 3n2 +8n+3 ≤ 3n2 +8n2 +3n2 =14n2

•  More generally, every quadratic function is O(n2).
•  O(n2) is the class of all functions that asymptotically grow no faster

than quadratic functions.
•  Note that 3n+3 is also O(n2). However, we are most interested in

describing an algorithm using the smallest (slowest growing) big-O
class that we can identify. So, it is more precise to say that 3n+3 is
O(n).

•  Adding the extra constant-time steps does not add to the big-O
complexity.

Array Operations
•  Insertion
•  Searching
•  Deletion
•  Display

•  Ordered array:
o  int[] intArray = { 0, 3, 6, 9, 12, 15, 18, 21, 24, 27 };

•  Unordered array:
o  int[] intArray = {18, 0, 3, 6, 24, 9, 12, 15, 21, 27 };

8	

Complexity
•  Linear search

o O(N)
•  Insertion in unordered array

o O(1)
•  Insertion in ordered array

o O(N)
•  Deletion in unordered array

o O(N)
•  Deletion in ordered array

o O(N)

Binary Search (Ordered Arrays)
BinarySearch(A, v) // A must be sorted

 n = A.size
 left = 0

 right = n-1
 while left<=right
 mid = (left + right)/2
 if A[mid] == v
 return true
 if v < A[mid]
 right = mid -1
 else
 left = mid +1
 return false

Each iteration divides the search
range [left..right] by 2.

When does the loop terminate?
•  we find what we are looking for, or
•  there are no more elements in the

search range.

Thus, the number of iterations is
bounded by the number of times
we can divide n by 2 before we get
1. This number is known as the log
base 2 of n.

9	

Logarithms

•  32= 2 * 2 * 2 * 2 * 2 = 25, it will take 5 iterations to get down
to 1.

•  The number 5 is called the log base 2 of 32. It is the exponent
x such that 2x = 32.

•  For arbitrary n, the number of iterations equals the number x
of times we can divide n by half so that we get 1.

•  Thus, x is the exponent for which n(1/2)x = 1. Equivalently, x
is the number such that 2x =n; i.e.,x is the log base 2 of n.

•  In general x will not be a whole number but is never more
than 1 away from the number of iterations.

int n = 32;
while (n > 1) { n = n/2; }

Subset Sum

•  Enumerate all subsets of the elements of A. For each
subset, see if its elements add up to K.

•  There are 2n subsets to enumerate. (Why?)
•  Therefore, the algorithm takes O(n*2n) time.
•  Subset Sum is NP-complete, which means that it is likely not

to have an efficient algorithm.

SUBSET SUM

Input: An array A with n elements and a number K.
Question: Does A contain a subset elements that adds up
to exactly K?

10	

Asymptotic Analysis
Hierarchy of Function Classes

•  Constant, O(1), functions don’t grow at all.
•  Logarithmic, O(log n), functions are slower growing than

linear functions.
•  Liner, O(n), functions are slower growing than O(n log

n) functions.
•  O(n log n) functions are slower growing than quadratic

functions.

•  Polynomial functions, i.e., O(nk) functions where k is
constant.

•  Exponential functions, i.e., O(an) functions where a>1.

Big O times

11	

Example Execution Times

Some General Observation
•  O(1) denotes “constant time” – anything not dependent

on the input size.
•  A polynomial is always big-O of its leading term.
•  For a O(f) operation followed by an O(g) operation, you

can ignore the smaller one. E.g., O(n2 + n) is O(n2).
•  If a O(f) operation is repeated O(g) times, the total time

is O(f � g). E.g., if an O(n2) operation is performed O(n
log n) times, the whole thing is O(n3 log n).

•  If the problem size n is decreased by a constant factor at
each step, the number of steps is O(log n).

