
1	

Classes and Objects

Based on The Java™ Tutorial

(http://docs.oracle.com/javase/tutorial/java/)
Based on the notes from David Fernandez-Baca and Steve Kautz

Bryn Mawr College
CS206 Intro to Data Structures

Classes and Objects
•  Classes
•  Objects
•  More on Classes

o The this keyword.
o Class vs. instance members.
o Access control.

•  Enum Types

2	

Civilization advances by extending the number of
important operations which we can perform without
thinking.

— Alfred North Whitehead

Modularity and Abstraction
There are two important ideas in software design:
•  Modularity means building systems out of components

that can be developed independently of each other. The
goal is to reduce coupling between components. That is,
changes in one component should not force other
components to change.

•  Abstraction is a way to reduce coupling: View
components in terms of their essential features, ignoring
details that arenʼt relevant to our particular concerns.
Each component provides a well-defined interface
specifying exactly how we can interact with it.

Object-oriented programming (OOP) can help us
achieve these goals.

3	

Objects
•  OOP allows us to easily create small modules that

closely model one coherent thing or concept in the
problem domain.

•  Instead of a collection of data with procedures that
act on the data, a modern software system is a
collection of interacting objects that communicate
through well-defined interfaces.

•  E.g., bank account. An object models a bank
account, keeps track of its own attribute and state,
and provides the rest of the system with an interface
to update and query its state.

Object and Class
•  State: instance variables that hold their values

between method calls.
•  Identity: once you create an object, you can refer to

it again, and distinguish it from others
•  Operations: its public interface or API(Application

Programming Interface). These are the public
methods.

A class is a type of object, say a bank account. Many
objects of the same class might exist; for instance,
myAccount and yourAccount.

4	

Principles of Object-Oriented Programming
•  Encapsulation means that objects only interact through a

well-defined set of operations (the public interface or API),
while the representation of the state, and the implementation
of the operations are kept hidden.

•  Inheritance allows us to derive a class of objects from a
more general class. A derived class inherits properties from
the superclass from which it derives. For example, the
SavingsAccount class might inherit from the BankAccount class
the property of storing a balance.

•  Polymorphism is the ability to have one method work on
several different classes of objects, even if those classes need
different implementations of the method. For example, one
line of code might be able to call the add method on every
kind of List, even though adding an item to a list of
BankAccounts might be completely different from adding an
item to a list of integers.

Declaring Classes
public class Bicycle {
 //the Bicycle class has two fields
 public int speed = 0;
 public int gear = 1;

 //the Bicycle class has one constructor
 public Bicycle(int startSpeed, int startGear){
 gear = startGear;
 speed = startSpeed;
 }

 //the Bicycle class has 3 methods
 public void setGear(int newValue) {
 gear = newValue;
 }

 public void speedUp(int increment) {
 speed += increment;
 }

 public void applyBrakes(int decrement) {
 speed -= decrement;
 }
}

Class
declaration

Constructor
initialize new objects

Declarations for the fields
that provide the state of the
class and objects

Declarations for
methods to implement
the behavior of the class
and its objects

Class body

5	

Declaring Member Variables
•  Access modifiers: let you control what other classes have access to a

member field.
o  public modifier: the field is accessible from all classes.
o  private modifier: the field is accessible only within its own class.

•  In the spirit of encapsulation, it is common to make fields private.
public class Bicycle {
 //the Bicycle class has two fields
 public int speed = 0;
 public int gear = 1;

 ……
}

public class Bicycle {
 private int speed = 0;
 private int gear = 1;

 public Bicycle(int startSpeed, int startGear){
 gear = startGear;
 speed = startSpeed;
 }

 public int getGear() {
 return gear;
 }
 public void setGear(int newValue) {
 gear = newValue;
 }
}

Overloading Methods
•  Method overloading: methods with the

same name.
•  Java can distinguish between methods

with different method signatures
•  Method signature: the method’s name

and the parameter types.
public double calculateAnswer(double wingSpan,
 int numberOfEngines, double length,
 double grossTons) {
 //do the calculation here
}
Signature:
calculateAnswer(double, int, double, double)

public class DataArtist {
 public void draw(int i) {
 …
 }

 public void draw(String s) {
 …
 }

 public void draw(double f) {
 …
 }

 public void draw(int i, double f){
 …
 }
}

6	

Constructors
Constructor declarations look like method declarations, but

o  They use the name of the class name
o  No return type

public Bicycle() {
 gear = 1;
 cadence = 10;
 speed = 0;
}
public Bicycle(int startSpeed, int startGear) {
 gear = startGear;
 speed = startSpeed;
}

To create a new Bicycle object called myBike:
Bicycle myBike = new Bicycle(30, 0, 8);

Note: Creating a new instance is also called instantiation. To instantiate an object we must
invoke a constructor, whose role is to establish the initial values of the instance variables.

Passing information to a Method or a Constructor

•  Primitive arguments, such as an int or a double, are
passed into methods by value.
o Any changes to the values of the parameters exist only

within the scope of the method.

•  Reference data type parameters, such as objects, are also
passed into methods by value.
o when the method returns, the passed-in reference still

references the same object as before.
o However, the values of the object's fields can be changed

in the method, if they have the proper access level.

7	

Objects
1.   public class CreateObjectDemo {
2.   public static void main(String[] args) {
3.   Point originOne = new Point(23, 94);
4.   Rectangle rectOne = new Rectangle(originOne, 100, 200);
5.   Rectangle rectTwo = new Rectangle(50, 100);
6.  
7.   System.out.println("Width of rectOne: " + rectOne.width);
8.   System.out.println("Height of rectOne: " + rectOne.height);
9.   System.out.println("Area of rectOne: " + rectOne.getArea());
10.  
11.   rectTwo.origin = originOne;
12.  
13.   System.out.println("X Position of rectTwo: " + rectTwo.origin.x);
14.   System.out.println("Y Position of rectTwo: " + rectTwo.origin.y);
15.  
16.   rectTwo.move(40, 72);
17.   System.out.println("X Position of rectTwo: " + rectTwo.origin.x);
18.   System.out.println("Y Position of rectTwo: " + rectTwo.origin.y);
19.   }
20.   }

Declare and create a
point object and two
rectangle objects.

display rectOne's
width, height, and area

Set rectTwo's position

display rectTwo's position

move rectTwo and display
its new position

1.  allocate memory for a new
object and return a reference to
that memory.

2.  Invoke the object constructor.

public class Rectangle {
 public int width = 0;
 public int height = 0;
 public Point origin;

 // four constructors
 public Rectangle() {
 origin = new Point(0, 0);
 }
 public Rectangle(Point p) {
 origin = p;
 }
 public Rectangle(int w, int h) {
 origin = new Point(0, 0);
 width = w;
 height = h;
 }
 public Rectangle(Point p, int w, int h) {
 origin = p;
 width = w;
 height = h;
 }

 // a method for moving the rectangle
 public void move(int x, int y) {
 origin.x = x;
 origin.y = y;
 }

 // a method for computing the area of the rectangle
 public int getArea() {
 return width * height;
 }
}

public class Point {
 public int x = 0;
 public int y = 0;
 // a constructor!
 public Point(int a, int b) {
 x = a;
 y = b;
 }
}

Objects – Rectangle and Point

8	

Objects
After executing line 3:

After executing line 4:

Using the this Keyword
Within an instance method or a constructor, this is a reference to the current
object — the object whose method or constructor is being called.

public class Rectangle {
 private int x, y;
 private int width, height;

 public Rectangle() {
 this(0, 0, 0, 0);
 }
 public Rectangle(int width, int height) {
 this(0, 0, width, height);
 }
 public Rectangle(int x, int y, int width, int height) {
 this.x = x;
 this.y = y;
 this.width = width;
 this.height = height;
 }
 ...
}

9	

Controlling Access to Members of a Class
•  Access level modifiers determine whether other classes

can use a particular field or invoke a particular method.
o  top level—public, or package-private (no explicit modifier).
o member level—public, private, protected, or package-private

(no explicit modifier).
•  public: class is visible to all classes everywhere.
•  no modifier (the default): visible only within its own

package
•  private: the member can only be accessed in its own class.
•  protected: the member can only be accessed within its

own package (as with package-private) and, in addition, by a
subclass of its class in another package.

Access Levels and Visibility

The visibility of the
members of the Alpha:

10	

Tips on Choosing an Access Level
•  Use the most restrictive access level that makes sense

for a particular member. Use private unless you have
a good reason not to.

•  Avoid public fields except for constants. Public fields
tend to link you to a particular implementation and
limit your flexibility in changing your code.

Class Variables
•  instance variables: each object has its own distinct copy
•  static fields or class variables:

o They are common to all objects.
o Any object can change the value of a class variable,

but class variables can also be manipulated without
creating an instance of the class.

11	

Enum Types
•  An enum type is a special data type that enables for a

variable to be a set of predefined constants.
•  The variable must be equal to one of the values that

have been predefined for it.
•  The enum declaration defines a class (called an enum

type).
•  It has a static values method (automatically added by

the compiler) that returns an array containing all of
the values of the enum in the order they are
declared.

public class EnumTest {
 Day day;

 public EnumTest(Day day) {
 this.day = day;
 }

 public void tellItLikeItIs() {
 switch (day) {
 case MONDAY:
 System.out.println("Mondays are bad.");
 break;

 case FRIDAY:
 System.out.println("Fridays are better."); break;

 case SATURDAY: case SUNDAY:
 System.out.println("Weekends are best.");
 break;

 default:
 System.out.println("Midweek days are so-so.");
 break;
 }
 }

 public static void main(String[] args) {
 EnumTest firstDay = new
 EnumTest(Day.MONDAY);
 firstDay.tellItLikeItIs();
 EnumTest thirdDay = new
 EnumTest(Day.WEDNESDAY);
 thirdDay.tellItLikeItIs();
 EnumTest fifthDay = new
 EnumTest(Day.FRIDAY);
 fifthDay.tellItLikeItIs();
 EnumTest sixthDay = new
 EnumTest(Day.SATURDAY);
 sixthDay.tellItLikeItIs();
 EnumTest seventhDay = new
 EnumTest(Day.SUNDAY);
 seventhDay.tellItLikeItIs();
 }
}

Enum Example

public enum Day {
 SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
 THURSDAY, FRIDAY, SATURDAY
}

