Introduction to Java

Based on notes from Dennis Frey, Susan
Mitchell, John Park, D. Hollinger and J.J. Johns,
and material from Java in a Nutshell and Java

Network Programming and Distributed
Computing

Java History

e Created by Sun Microsystems team led by
James Gosling (1991)

e Originally designed for programming home
appliances

Difficult task because appliances are controlled by a wide
variety of computer processors

Writing a compiler (translation program) for each type of
appliance processor would have been very costly.

Solution: two-step translation process
compile, then
Interpret

First Program

public class Hello {
public static void main(String args[]) {
System.out.println("Hello World") ;

}

Compiling and Running Java

Java
Code

javac Hello.java

Hello.java

Java compiler

JRE for
Java
Bytecode
Java interpreter (JVM)
> translates bytecode to
machine code in JRE
Hello.class

Java Terminology

Java acronyms are plentiful and confusing. Here are the basics.

e JVM - Java Virtual Machine
Translates Java bytecode to machine code

e API - Application Programming Interface
Java code libraries

e JRE - Java Runtime Environment
The JVM and the Java API together

e JDK (formerly SDK) — Java Development Kit
JRE + tools (compiler, debugger) for developing Java applications and applets

e J2SE - Java 2 Platform, Standard Edition
The JRE and JDK products taken as a “family”

e TJo learn more about JDK, JRE, etc, visit:

http://java.sun.com/javase/technologies/index.jsp

Java Versions

e Latest version of Java: Java 7, also known as
Java 1.7 orJava 1.7.0

e Previous version: Java 6, also known as Java
1.6, Java 1.6.0 or “Java 2 SE Version 6”

e Jo learn more about Java version naming, visit:
http://java.sun.com/javase/namechange.htmi

The Eclipse IDE

* An integrated development environment (IDE) for
writing Java programs. Contains (minimally):

editor
debugger
Java compiler
Java JVM

e Free download for your PC (link on course website)
e Available in the computing labs

e \We'll show you more later

Eclipse IDE Screenshot

==X

€ Java - Dancelesson/src/dancelLesson/Dancelesson.java - Eclipse Platform
File Edit Source Refactor Navigate Search Project Run Window Help

Jr‘jv J%'O'Q'J@&%@'JBBQ—’J .'.vJ_}v}v“ o ow v 598! Java »
1% Packa |52 Outlin [% Navig %2 = O|([DanceLesson.java =0
Py &|e ¥ le/* File: Dancelesson.java a
@& Arrays - 2 | * Demonstrates: —
- : 3| * - How errors have been caught and handled up to this point
&= BadNumberException 1| %/
-2 BankAccountException -
.J i
[Hg Butb:)IeSort 6 package dancelesson;
,,,,,, ca a og ,7
1 Chapter10 8 import java.util.Scanner;
1 Chapter13 9
...... 1 Chapteri4 10 public class Dancelesson
-1 Chapteré 11
vvvvvv 1 Chapter9 12e public static void main(String[] args)
vvvvvv 1 ConsoleIO 13 {]
: canner keyboard = new Scanner (System.in);
1 Coordinates L S keyboard & (s)
B L?[éal;FeLesson 16 System.out.println("Enter number of male dancers:");
- in 7 int men = keyboard.nextInt();
== Src 8
= ttbdanceLesson 19 System.out.println("Enter number of female dancers:"); b
~-[1) DanceLesson.java 20 int women = keyboard.nextInt();
% .classpath 21
[x .project 22 if (men == 0 && women == ()
»»»»»» 1 Dancelesson2 23 {
vvvvvv 7 DancelLesson3 — 24_1 System. ou?.println ("Lesson 1s canceled. No students."):;
- Date 25 System.exit (0);
@2 Datel 2? ! .
. 27 else if (men == 0)
bJ Date2 28 {
D""?J Date3 29 System.out.println("Lesson is canceled. No men.");
#=-=> Date4 30 System.exit (0); 4
vvvvvv 1 Datelast ﬂ »

®-= Employee
-2 Exam1_F08
#-&2 Exam2_F08
»»»»»» 1 FinalExample
-1 GeneralPlay
®-1= Generics
vvvvvv &1 Implements
1 Inheritance
w12 Tnterfaces

(2. Problems [@ Javadoc|[@ Declaration %> Debug|

o X% pilgeElr By iy =0

<terminated> Dancelesson [Java Application] C:\Apps\jre1.6.0_03\bin\javaw.exe (Aug 25, 2009 4:39:20 PM)

Enter number of male dancers:

Enter number of female dancers:

Each man must dance with 1.0 women.
Begin the lesson.

4| K

[

o

J-<>

Java Basics

Simple “Procedural” Java

public class MyClass {
static boolean sawNonZero = false;

public static void @ain(String[]”args) {
System.out.print (Hello, world);

int quotient = 3 / 4;
1f (testNonZero (quotient)) {

System.out.print (“\nQuotient is non-zero\n”);

}
}

static boolean testNonZero (int wvalue) {

1f (value !'= 0) {
sawNonzZzero = true;
return true;

} else

return false;

12

Java Program Basics

All code has to be inside some class definition

— For now, we can think of this like in terms of file/module, or
namespace

All programs begin execution at main()
« This is much like in C, but...
* You can have a different main() in every class: pick at runtime
System.out.print()
— QOutputs text to the screen

System.out.print(“Hello™);
— There is also System.out.printin(), which terminates w/newline

Can program procedurally:

— Just put the word “static” in front of all functions and global
variables.

*13

Variable Declarations

 Format: type variable-name,

 Examples:
int total;
float salary;

» Variables may be declared anywhere in the
code, but may not be used until declared.

— Note the declaration of int quotient; in the sample

program.

» This feature allows you to declare variables close to where
they are used, making code more readable.

« However, “can” doesn’t imply “should”—in general,
declarations are often best at top of a block

14

Variable Declarations (con' t)

 \When we declare a variable, we tell Java:

— When and where to set aside memory space for
the variable

— How much memory to set aside

— How to interpret the contents of that memory:
the specified data type

— What name we will be referring to that location
by: its identifier

*15

Naming Conventions

» Variables, methods, and objects
— Start with a lowercase letter
— Indicate "word" boundaries with an uppercase letter

— Restrict the remaining characters to digits and
lowercase letters

— Can use underscores

topSpeed bankRatel timeOfArrival

 Classes
— Start with an uppercase letter
— Otherwise, adhere to the rules above

FirstProgram MyClass String

*16

Primitive Types

Display 1.2 Primitive Types

boolean true or false | byte not applicable
char single character 2 bytes all Unicode characters
(Unicode)
byte integer | byte —128 to 127
short integer 2 bytes —32768 t0 32767
int integer L bytes —2147483648 to
2147 483647
long integer 8 bytes —9223372036854775808 to
9223372036854775807
float floating-point 4 bytes —3.40282347 X 1073% to
number —1.402398 46 X 107 4>
double floating-point 8 bytes +1.76769313486231570 X 10*3°® to
number +4.940656 45841246544 X 107324

Copyright © 2008 Pearson Addison-Wesley. All rights
reserved

17

Fixed Size for Primitive Types

« Java byte-code runs on the Java Virtual
Machine (JVM).

— Therefore, the size (number of bytes) for each
primitive type is fixed.

— The size Is not dependent on the actual
machine/device on which the code executes.

— The machine-specific JVM is responsible for
mapping Java primitive types to native types
on the particular architecture

*18

Assignment:
Numeric:
Relational:
Boolean:
Bitwise:

Operators

k
+1 Y, /) %) ++))
==, !=; < >r <=; >=;
&&, ||,

Arithmetic Operators
Rules of Operator Precedence

Operator(s) Precedence & Associativity

() Evaluated first. If nested,
iInnermost first. If on same level,
left to right.

* I % Evaluated second. If there are

several, evaluated left to right.

+ — Evaluated third. If there are
several, evaluated left to right.

Evaluated last, right to left.

20

Practice With Evaluating Expressions

Given integer variables a, b, ¢, d, and e,
wherea=1,b=2,¢c=3,d =4,

evaluate the following expressions:

at+tb-c+d
a*b/c
1+a*b%c
at+td%b-c
e=b=d+c/b-a

21

A Hand Trace Example

Int answer, value =4 ;

Answer

Code Value
4 garbage

value = value + 1 ;

value++ ;

++value ;

answer = 2 * value++ ;
answer = ++value / 2 ;
value-- ;

--value ;

answer = --value * 2 ;
answer = value--/ 3 ;

More Practice

Given
inta=1,b=2,¢c=3,d=4;

What is the value of this expression?

++b/c+a* d++
What are the new values of a, b, ¢, and d?

23

Assignment Operators

Statement
a=a+2;
a=a-3;
a=a*2;
a=a/4:;
a=a%?2;
b=b+(c+2);
d=d*(e-5);

* — /= 0=
Equivalent Statement

a+=2;

a-=3;

a*=2;

a/=4,

a %=2;

b+=c+2;
*—e-5;

24

Type Casting

* A type cast takes a value of one type and produces a
value of another type with an "equivalent” value.

int n, m;

double ans n / (double)m;
OR

double ans
OR

double ans = (double)n / (double)m;

(double)n / m;

— The type and value of n and m do not change.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

25

Java Comparison Operators

Display 3.3 Java Comparison Operators

MATH
NOTATION

NAME

Equal to

Not equal to

Greater than
Greater than or equal to
Less than

Less than or equal to

JAVA
NOTATION

>=

JAVA EXAMPLES
X + 7 == 2%y
answer == 'y'
score != 0

answer !='"y'

time > limit
age >= 21
pressure < max

time <= limit

Copyright © 2008 Pearson Addison-Wesley.

All rights reserved

Boolean Expressions

* QOperators: &&, ||, !

« Boolean expression evaluates to the values true or
false

« Simple Boolean expressions:
time < limit

yourScore == myScore

— Two equal signs (==): equality testing
— Single equal sign (=): assignment

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

27

Control Structures

Java Flow Control

 Decisions
If, if-else, switch
* Loops
for, while, do-while

 Boolean expressions

— Java flow control constructs evaluate Boolean
expressions

— The expression must be of boolean type:
« Cannot do: “if (--c)...”; must do: “if (--c !=0)...”

29

if-else & while Statements

if (condition,) {

Statement(s)
} else if (condition,) {

Statement(s)
}

- /* more else if clauses may be here */

} else {

statement(s) [* the default case */
}

while (condition) {
statement(s)
}

30

Example

while (children >0) {
children = children - 1 ;

cookies = cookies * 2 :

J

31

Good Programming Practice

* Always place braces around the bodies of
the if and else clauses of an if-else
statement.

* Advantages:

— Easier to read

— Will not forget to add the braces if you go back
and add a second statement to the clause

— Less likely to make a semantic error

* Indent the bodies of the if and else clauses
3 to 4 spaces -- be consistent!

*32

Example

factorial = 1;

while (myNumber >0) {
factorial *= myNumber;
--myNumber;

}

return factorial;

33

The 3 Parts of a Loop

inti = 1 ; —====initialization of loop control variable

// count from 1 to 100
while (1< 101) { — test of loop termination condition

System.out.printin(i) ;
i=i+1; —==—= modification of loop control variable

}

return O ;

.34

The for Loop Repetition
Structure

« The for loop handles details of the counter-controlled
loop “automatically”.

* The initialization of the the loop control variable, the
termination condition test, and control variable
modification are handled in the for loop structure.

for(i=1;1<101;i=1+1){
initialization‘ modification

} test

35

When Does a for Loop Initialize, Test and
Modify?

« Just as with a while loop, a for loop

— initializes the loop control variable before
beginning the first loop iteration

— performs the loop termination test before each
iteration of the loop

— modifies the loop control variable at the very
end of each iteration of the loop

* The for loop is easier to write and read for
counter-controlled loops.

*36

for Loop Examples

* A forloop that counts from O to 9:

// modify part can be simply “i++’

for (1 = 0; i < 10; i =1+ 1) {
System.out.println(1) ;

}

 ...0or we can count backwards by 2’ s :

7

// modify part can be “i -= 2
for (1 = 10; 1 > 0; 1 =1 - 2) |
System.out.println(1) ;

}

37

The do-while Repetition
Structure

do {
statement(s)
} while (condition) ;

* The body of a do-while is ALWAYS
executed at least once. Is this true of a
while loop”? What about a for loop?

38

The break & continue Statements

 The break & continue statements can be
used in while, do-while, and for loops to cause
the remaining statements in the body of the loop
to be skipped; then:
— break causes the looping itself to abort, while...

— continue causes the next turn of the loop to start. In
a for loop, the modification step will still be executed.

39

Example break in a for Loop

int 1 ; ‘OUTPUT:
for (i =1; i < 10; 1 =i + 1) {
if (1 == 5) { «1234
break;
*Broke out of loop at i = 5.

}
System.out.println (1) ;

}

= = + i)

System.out.println (“\nBroke out of loop at i

-40

Example continue in a for Loop

int i; OUTPUT:

for (i = 1; 1 < 10; i =1 + 1) {
if (1 == 5) { 12346789

continue;

} Done.
System.out.println (1) ;

}

System.out.println ("Done”) ;

41

Problem: continue in while Loop

// This seems equivalent to for loop

// in previous slide—but is it?? OUTPUT:
int 1 = 1; ?2??
while (1 < 10) {

1if (1 == 5) {

continue;

}

System.out.println(1i);
i =1+ 1;
}

System.out.println (“Done”) ;

42

The switch Multiple-Selection Structure

switch (integer expression)
{
case constant, :
statement(s)
break ;
case constant, :
statement(s)
break ;

default: :
Statement(s)
break ;

Notes:

break and default are
keywords

If no break, execution flows
through to next case

If no default, switch might
not do execute anything

43

switch Example

switch (day) {

case 1: System.out.printin (“Monday\n”) ;
break ;

case 2: System.out.printin (“Tuesday\n”) ;
break ;

case 3: System.out.printin (“Wednesday\n”) ;
break ;

case 4: System.out.printin (“Thursday\n”) ;
break ;

case 5: System.out.printin (“Friday\n”) ;
break ;

case O:

case 6: System.out.printin (“Weekend\n”) ;
break ;

default: System.out.printin (“Error -- invalid day.\n”) ;
break ;

Variable Scope

Variable scope:

 That set of code statements in which the variable
IS known to the compiler

 Where it can be referenced in your program.

 Limited to the code block in which it is defined.

— A code block is a set of code enclosed in braces ({ }).

One interesting application of this principle allowed
In Java involves the for loop construct.

45

for-loop index

« Can declare and initialize variables in the heading
of a for loop.

* These variables are local to the for-loop.
« They may be reused in other loops.

String s = “hello world’;

int count = 1;
for (int i = 0; i < s.length(); i++)

{

count *= 2;

}

//using 'i' here generates a compiler error

-46

Named Constants

No “hard coded” values inside code!

Declare constants as named constants, and use their
name instead

public static final int INCHES PER FOOT = 12;
public static final double RATE = 0.14;

— The “£inal” modifier prevents a value from being
changed inadvertently.

— More about public and static later

— Naming convention for constants
« Use all uppercase letters
« Designate word boundaries with an underscore character

47

Comments and Documentation

Comments

Line comment
— Begins with the symbols //
— Compiler ignores remainder of the line
— Used for the coder or for a programmer who modifies the code

if (birthYear > currentYear) // birth year is invalid
then . ..

Block comment
— Begins with /* and ends with */
— Compiler ignores anything in between
— Can span several lines
— Provides documentation for the users of the program

[* File: Date
Author: Joe Smith
Date: 9/1/09

*/

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

.49

Comments & Named Constants

Display 1.8 Comments and a Named Constant

1

2 Program to show interest on a sample account balance.

3 Author: Jane Q. Programmer.

4 E-mail Address: janeq@somemachine.etc.etc.

5 Last Changed: September 21, 2004.

7 public class ShowInterest

8 {

9 public static final double INTEREST_RATE = 2.5;
10 public static void main(String[] args)
11 {
12 double balance = 100;
13 double interest; //as a percent
14 interest = balance * (INTEREST_RATE/100.0);
15 System.out.println("On a balance of $" + balance);
16 System.out.println("you will earn interest of $"
17 + interest);
18 System.out.println("All in just one short year.");
19 1
20 —-= ;i:'ff'“i‘g“ It would not be as clear it is
21 3} II;\(;;IERE:;[(the definition of

> _RATE here instead

SAMPLE DIALOGUE

On a balance of $100.0
you will earn interest of $2.5
All in just one short year.

Copyright © 2008 Pearson Addison-Wesley

All rights reserved

Special Javadoc Comment Form

» Similar to block comment, but:
— Begins with /**
— Not special to Java: considered same as “/*”

— Processed by separate Javadoc program that creates
HTML documentation pages from program source

— Known set of embedded tags have special meaning
to Javadoc.

« E.g.: @param, Q@return

— For an example:
http://download.oracle.com/javase/6/docs/api/java/
lanq/String.html

51

Arrays

Arrays

* Array. A data structure used to process a
collection of data that is all of the same type.

* An array is declared and created using the new
operator.

BaseType[] ArrayName = new BaseType[size];

 The size may be given
e as a non-negative integer, or
« as an expression that evaluates to a nonnegative integer.

char[] line = new char[80];
double|[] reading = new double[count];

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

53

Declaring vs. Creating Arrays

« Example

double[] score = new double[5];

or, using two statements:

double[] score; // declares
score = new double[5]; // creates

« The 1st statement declares score to be of the array
type double[] (an array of doubles).

* The 2nd statement

— creates an array with five numbered values of type double
— makes the variable score a name for the array

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved 54

The 1length Instance Variable

 An array is considered to be an object.

* Every array has exactly one instance variable
(characteristic) named length.

— When an array is created, the instance variable
length is automatically set equal to its size.

— The value of 1ength cannot be changed (other than by
creating an entirely new array using new).

double[] score = new double[5];

— Given score above, score.length has a value of 5.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

55

Initializing Arrays

* An array can be initialized when it is declared.

 Example:
int[] age = {2, 12, 1};

« Given age above, age . length automatically
has a value of 3.

System.out.print (“Length is “ + age.length);
prints
Length is 3

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

56

Notes on Arrays

index starts at O.
arrays can’t shrink or grow.
each element is initialized.

array bounds checking (no overflow!)
— ArraylndexOutOfBoundsException

Initializing Arrays

* Using a for loop,

double[] reading = new double[100];

for (int index = 0; index < reading.length; index++) {
reading[index] 42 .0;

}

* Using array literals:

int[] foo = {1,2,3,4,5};
String[] names = {“Joe”, “Sam’};

* If the elements of an array are not initialized
explicitly, they will automatically be initialized to the
default value for their base type.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

58

An Array Coding Exercise

» Write a code fragment that finds the
smallest value in an array of integers.

59

Arrays as Parameters

* An array may be a method argument. Example:

public void doubleElements (double[] a) // a = address

{
for (int i = 0; i < a.length; i++) // notice use

a[i] = a[i]*2; // of a.length
}

« Given arrays of double as follows:

double[] a = new double[10];
double[] b = new double[30];

the method doubleElements can be invoked as follows:

doubleElements (a) ;
doubleElements (b) ;

Copyright © 2008 Pearson Addison-Wesley. All rights
reserved

360

Pitfall. Use of = with Arrays

* An array variable contains the memory
address of the array it names.

* The assignment operator (=) only copies
this memory address.

int a[] = {1, 2, 3};
int b[] = new int[3];

b =a; // b and a are now names for
// the same array

Copyright © 2008 Pearson Addison-Wesley. All rights
reserved

Pitfall. Use of = with Arrays

A for loop is usually used to make two different
arrays have the same values in each indexed
position.

int 1i;

int a[] = {1, 2, 3};
int b[] = new int[3];
for (1 = 0; (1 < a.length) && (i < b.length); i++)

b[i] = a[i];

— Note that the above code will not make b an exact
copy of a, unless a and b have the same length

Copyright © 2008 Pearson Addison-Wesley. All rights
reserved

Pitfall. Use of == with Arrays

* The equality operator (==) only tests two arrays
to see if they are stored in the same memory
location.

(a == b)

IS true if a and b reference the same array.
Otherwise, itis false.

« An equalsArray method can be defined to
test arrays for value equality.

— The following method tests two integer arrays to see if
they contain the same integer values.

*63

Code to Test for Value Equality

public boolean equalsArray(int[] a, int[] b)
{
if (a.length == b.length)
{
int 1 = 0;
boolean elementsMatch = true;
while (i < a.length && elementsMatch)
{
if (a[i] '= b[i])
elementsMatch = false;
i++;
}
return elementsMatch;
}
else
return false;

Copyright © 2008 Pearson Addison-Wesley. All rights
reserved

Strings and Arrays Are Objects

e It’ s important to keep in mind that despite
syntactic shortcuts (e.g., “hello” + “bye”,
foo[x]), strings and arrays are objects
— They have real methods

— They have constructors, which must be called
to create new instances.

« Otherwise, you just have null references.

*65

Exception Handling

Exceptions

* Terminology:

— throw an exception: signal that some condition
(possibly an error) has occurred.

— catch an exception: deal with the error (or
whatever).

* |n Java, exception handling is necessary
(forced by the compiler)!

Try/Catch/Finally

try {
// code that can throw an exception

} catch (ExceptionTypel el) {
// code to handle the exception
} catch (ExceptionType2 e2) {
// code to handle the exception
} catch (Exception e) {
// code to handle other exceptions
} finally {
// code to run after try or any catch

}

Exception Handling

* Exceptions take care of handling errors

— instead of returning an error, some method calls
will throw an exception.

* Can be dealt with at any point in the method
invocation stack.

* Forces the programmer to be aware of what
errors can occur and to deal with them.

Exception Example

static String squareNumberString(String str) {
int n;
try {
n = Integer.parselnt(str);

} catch (NumberFormatException e) {
System.err.printIn(“Error: invalid integer \”” + str + ”\"”);
System.exit(1);

}

return “”+ Math.pow(n,2);

A Better Exception Example

static String squareNumberString(String str) {
int n;
try {
n = Integer.parselnt(str);
} catch (NumberFormatException e) {

throw new InvalidArgumentException(“str must contain a
valid integer”);

}

return “”+ Math.pow(n,2);

Strings

The String Class

* No primitive type for strings in Java

 Stringis a predefined class in the Java language.

— Used to store and process strings

* Objects of type String are made up of strings of
characters within double quotes.

— Any quoted string is a constant of type String.

"Live long and prosper."

« Avariable (object) of type String can be given the value
of a String constant.

String blessing = “Live long and prosper."
String greeting = “Hello”;

1 ”

String name = Bob ;

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved 73

String Concatenation

Use the + operator

String greeting = “Hello”;
String name = “Bob’;
greeting + name isequalto “HelloBob”

Any number of strings can be concatenated together.

When a string is combined with almost any other type of item, the result is a
string

“The answer is “ + 42 evaluates to
“The answer is 42°

Strings also support the += operator

String greeting = "Hello”;
greeting += “ Bob’; changes greeting to “Hello Bob”

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved 74

String Methods

The string class contains many useful methods (operations) for string-
processing applications.

Calling a String method:

String-object-name.method-name (arguments); OR

variable = String-object-name.method-name (arguments);

Example

String greeting = “Hello”; //greeting is an object
int count = greeting.length() ;
System.out.println(“Length is “ + greeting.length()) ;

Copyright © 2008 Pearson Addison-Wesley. 75
All rights reserved

Some Methods in the Class String (1 of 4)

Some Methods in the Class String

int length()

Returns the length of the calling object (which is a string) as a value of type int.

EXAMPLE

After program executes String greeting = "Hello!";
greeting.length() returns 6.

boolean equals(Other_String)

Returns true if the calling object string and the Other_String are equal. Otherwise, returns false.

EXAMPLE

After program executes String greeting = "Hello";
greeting.equals("Hello") returns true
greeting.equals("Good-Bye") returns false
greeting.equals("hello") returns false

Note that case matters. "Hello" and "hello" are not equal because one starts with an uppercase
letter and the other starts with a lowercase letter.

(continued)

Copyright © 2008 Pearson Addison-Wesley. /6

All rights reserved

Some Methods in the Class String (2 of 4)

Some Methods in the Class String

boolean equalsIgnoreCase(Other_String)

Returns true if the calling object string and the Other_String are equal, considering uppercase and low-
ercase versions of a letter to be the same. Otherwise, returns false.

EXAMPLE

After program executes String name = "mary!";
greeting.equalsIgnoreCase("Mary!") returns true

String tolLowerCase()

Returns a string with the same characters as the calling object string, but with all letter characters con-
verted to lowercase.

EXAMPLE

After program executes String greeting = "Hi Mary!";
greeting.toLowerCase() returns "hi mary!".

(continued)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Some Methods in the Class String (3 of 4)

Display 1., Some Methods in the Class String

String toUpperCase()

Returns a string with the same characters as the calling object string, but with all letter characters con-
verted to uppercase.

EXAMPLE

After program executes String greeting = "Hi Mary!";
greeting.toUpperCase() returns "HI MARY!".

String trim()

Returns a string with the same characters as the calling object string, but with leading and trailing white
space removed. Whitespace characters are the characters that print as white space on paper, such as the
blank (space) character, the tab character, and the new-line character '\n".

EXAMPLE

After program executes String pause = " Hmm "
pause.trim() returms "Hmm".

(continued)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved /8

Some Methods in the Class String (4 of 4)

Display 1.4, Some Methods in the Class String

char charAt(Position)

Returns the character in the calling object string at the Position. Positions are counted o, 1, 2, etc.

EXAMPLE

After program executes String greeting = "Hello!";
greeting.charAt(0) returns 'H', and
greeting.charAt(1l) returns '

e'.
String substring(Start)

Returns the substring of the calling object string starting from Start through to the end of the calling
object. Positions are counted o, 1, 2, etc. Be sure to notice that the character at position Startis included in
the value returned.

EXAMPLE

After program executes String sample = "AbcdefG";
sample.substring(2) retums "cdefG".

(continued)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved 79

Escape Sequences

Display 1.6 Escape Sequences

\" Double quote.

\" Single quote.

\\ Backslash.

\n New line. Go to the beginning of the next line.

\r Carriage return. Go to the beginning of the current line.
\t Tab. White space up to the next tab stop.

« The character following the backslash does not have its usual
meaning.

« Itis formed using two symbols, but regarded as a single
character.

Copyright © 2008 Pearson Addison-Wesley
All rights reserved 80

Pitfall: Using == with Strings
« The equality operator (==) can test the stored values of two values of a primitive type.

int x =5, y=5;
if (x==vy) . . . // returns true

* When applied to two objects, == tests to see if they are stored in the same memory
location. Example:

String stringl = “hello”;
String string2 = “hello”;
if (stringl == string2) . . . // returns false

« To test two strings to see if they have equal values, use the String method equals,
Or equalsIgnoreCase.

if (stringl.equals(string2)) // returns true
or
if (stringl.equalsIgnoreCase (string2)) // returns true

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved 81

Other Pitfalls with Strings

« Be careful with concatenation: associativity and
promotion still applies:

— Consider the following two expressions:

4 + 2 + “is the answer to everything’;

VS..
“The answer to everything is “ + 4 + 2;

« A String is immutable

— There is no way to modify any chars in a String:
« E.g.: “someString.charAt(x)” doesn’t let you change that char
— But what does “immutable” really mean? Consider:

String immutable = “Yes”;

immutable = No ;
// Why is this allowed? And what of “+="?

(See bad example)

82

Input/Output

 The java.io package provides classes for reading and
writing streaming (sequential) data

 Example: reading lines from the console

import java.io.*;

BufferedReader console = new BufferedReader(new
InputStreamReader(System.in));

System.out.print(“Enter your name: “);
String name = null;

try {
name = console.readline();

} catch (IOException e) {
System.err.printin(“Fatal input error: “+e);

System.exit(1);
}

System.out.printin(“Hello “+name);

* File input/output is similar, but more on that later

