
Introduc)on	
 to	
 Java	

	

Objects	
 and	
 Classes	

1	

Based	
 on	
 notes	
 from	
 Dennis	
 Frey,	
 Susan	

Mitchell,	
 John	
 Park,	
 D.	
 Hollinger	
 and	
 J.J.	
 Johns,	

and	
 material	
 from	
 Java	
 in	
 a	
 Nutshell	
 and	
 Java	

Network	
 Programming	
 and	
 Distributed	

Compu:ng	

What’s an Object?
l  Must first define a class

l  A data type containing
l  Attributes - make up the object’s “state”
l  Operations - define the object’s “behaviors”

2

deposit money
withdraw money
check balance
transfer money
more?

Bank Account
account number
owner’s name
balance
interest rate
more?

String
sequence of characters
more?

compute length
concatenate
test for equality
more? operations

(behaviors)

name

attributes
(state)

So, an object is …
l  a particular “instance” of a class.

3

Berg’s Account Frede’s Account Mitchell’s Account

43-261-5
Sarah Mitchell
$825.50
2.5%

For any of these accounts, one can

•  deposit money

•  withdraw money

•  check the balance

•  transfer money

12-345-6
Jen Berg
$1,250.86
1.5%

65-432-1
Dennis Frede
$5.50
2.7%

A Class Is a Type
•  A class is a programmer-defined type.

•  Variables can be declared of a class type.

•  A value of a class variable type is called an
object or an instance of the class.

–  If A is a class, then the phrases

•  “X is of type A“
•  “X is an object of the class A"
•  “X is an instance of the class A"

 mean the same thing

5

Objects
•  All objects of a class have the same methods.

•  All objects of a class have the same attributes
(i.e., name, type, and number).

–  For different objects, each attribute can hold a
different value.

–  The values of the attributes define the object state,
which is what makes each object unique.

6

The Class Definition
•  A class definition implements the class model.

–  The class behaviors/services/actions/operations are
implemented by class methods.

–  The class attributes (data items) are called fields or
instance variables.

•  In Java, classes are defined in files with the .java
extension.

•  The name of the file must match the name of the
class defined within it.
–  e.g. class ‘Baker’ must be in Baker.java

7

Anatomy of a Java Class

Visibility modifier
(More on this later) Name of the class Keyword class

public class Date1

{

}

Class body: instance variables, methods

NO semi-colon

8

Instance Variables
•  Defined inside the class definition
•  May be

–  primitive types
–  other class types

•  Are accessible by all methods of the class
–  have class scope

•  Given the services identified for the red-green-
yellow traffic light, the garage door opener and
the bank account, what instance variables might
be defined for each?

9

Anatomy of a Method

Are very much like functions

Visibility modifier
(More on this later)

Name of the method

return type

public double toCelcius

{

}

Method code: local variables and statements

 (double fTemp)

Optional parameters

10

Example: A Date Class
This class definition goes in a file named

Date1.java.

public class Date1
{
 public String month;
public int day;

 public int year;

 public String toString()
 {
 return month + “ “ + day + “, “ + year;
 }

}

These	
 are	
 the	
 (public)“data	
 members”	
 or	
 	

“instance	
 variables”	
 of	
 the	
 class	

This	
 is	
 a	
 method	
 defini)on	
 and	
 its	
 	

implementa)on	

A	
 method	
 may	
 use	
 the	
 class	
 instance	
 variables	

11

Date1 toString Method
•  toString is a method of the Date1 class.

–  Its definition and implementation are part of the Date1
class.

•  Class methods may
–  be void or return a value, and
–  (optionally) have parameters, which may be

•  primitive types passed by value, and/or
•  objects (discussed later).

•  All of a class’ methods have access to all of the
class’ instance variables (class scope).

12

Using Date1
This class definition goes in a file named Date1Demo.java.

public class Date1Demo
{
 public static void main(String[] args)
{
 Date1 myDate;
 myDate = new Date1();

 myDate.month = “July”;
 myDate.day = 4;
 myDate.year = 2007;

 String dateString = myDate.toString();
 System.out.println(dateString);

 }

}

Create	
 a	
 Date1	
 object	

named	
 myDate	

Give	
 values	
 to	
 the	
 data	

members	

Invoke	
 the	
 toString	
 method	

13

Creating the Date1 Object
•  The statement Date1 myDate; defines a variable of

type Date1.
–  But there is no Date1 object yet!

•  The statement myDate = new Date1(); creates a
“new” Date1 object and names it with the variable
“myDate”.
–  Now “myDate” refers to a Date1 object.

•  For convenience, these statements can be

combined.
 Date1 myDate = new Date1();

14

“Dot” Notation
•  Public instance variables of an object are

referenced using the “dot” operator.

 myDate.month = “July”;
 myDate.day = 4;
 myDate.year = 2011;

•  Instance variables can be used like any other
variable of the same type.

•  The set of values stored in all instance variables
define the state of the myDate object.

15

More “Dot” Motation
•  The statement

myDate.toString();

 invokes the toString method of myDate, which
refers to an object of type Date1.

•  In OO terminology, we say that we are “sending
the toString message” to the object referred to
by myDate.

•  The object myDate is referred to as the calling
object or host object.

16

Other Date Methods
Some other possible services that the Date1

class might provide:

•  incrementDay - changes the date to
“tomorrow”

•  DMYString – creates a different string format
•  setDate - initialize/change the year, month,

and/or day
•  What others ?

17

New Date1 Methods
 // change the month (using an int), day, and year.
 public void setDate(int newMonth, int newDay, int newYear)
 {
 month = monthString(newMonth);
 day = newDay;
 year = newYear;
 }

 // change month number (int) to string - used by setDate

 public String monthString(int monthNumber) {
 switch (monthNumber) {
 case 1: return "January";
 case 2: return "February";
 case 3: return "March";
 case 4: return "April";
 case 5: return "May";
 case 6: return "June";
 case 7: return "July";
 case 8: return "August";
 case 9: return "September";
 case 10: return "October";
 case 11: return "November";
 case 12: return "December";
 default: return “????”;
 }
 }

18

Confusion?
•  In the preceding setDate method it’s tempting to define

the method using the common terms “month”, “day” and
“year” as the parameters.

public void setDate(int month, int day, int year)

 {
 month = monthString(month);// which month is which?
 day = day; // which day is which?
 year = year; // which year is which?
 }

The compiler assumes that all uses of day, month, and

year refer to the method parameters and hence this code
has no effect.

19

Calling Object
When any class method is called, the instance variables

used within the method are assumed to belong to the
calling/host object.

What the code in setDate is really trying to do is

public void setDate(int month, int day, int year)
 {
 “calling object”.month = monthString(month);
 “calling object”.day = day;
 “calling object”.year = year;
 }

It’s handy (and sometimes necessary) to have a name for

the calling object.
In Java, we use the reserved word this as the generic

name of the calling object.

20

Using this
So, if we want to name our parameters the same as our

instance variables:

 public void setDate(int month, int day, int year)
 {
 this.month = monthString(month); // notice “this”
 this.day = day;
 this.year = year;
 }

Note:
•  Many examples in the text use this technique for class

methods.
•  Some Java programmer tools (including Eclipse) use this

technique when writing code for you.
21

this Again
Recall the toString method from Date1:

 public void toString()
 {
 return month + “ “ + day + “ “ + year;
 }

It’s clear that month, day, and year refer to the instance
variables of the calling object because there are no
parameters.

We could have written:
 public void toString()
 {
 return this.month + “ “ + this.day + “ “ + this.year;
 }

If the prefix this is unnecessary, it is usually omitted.

22

Sample Code Segment Using Date1

Date1 newYears = new Date1();
newYears.month = “January”;
newYears.day = 1;
newYears.year = 2011;

Date1 birthday = new Date1();
birthday.month = “July”;
birthday.day = 4;
birthday.year = 1776;

System.out.println(newYears.toString()); // line 1
System.out.println(birthday.toString()); // line 2
System.out.println(birthday.monthString(6)); // line 3
birthday.setDate(2, 2, 2002); // line 4
System.out.println(birthday.toString()); // line 5
newYears.day = 42; // line 6
System.out.println(newYears.toString()); // line 7

23

August 42, 2011

•  It appears that classes allow the user to
change the data anytime he or she
chooses, possibly making the data invalid.

•  That’s true so far because we have

defined our instance variables with
public access.

•  This is rarely the case in real applications.
24

25

More About Methods
•  Different classes can define a method with the same

name.
•  Java can determine which method to call based on the

type of the calling object.
•  Example:

 Date1 birthday = new Date1();
 Dog fido = new Dog();
 System.out.println(birthday.toString());
 System.out.println(fido.toString());

–  birthday.toString() will call the toString() method
defined in the Date1 class because birthday’s type is Date1.

–  fido.toString() will call the toString() method defined in
the Dog class because fido’s type is Dog.

26

Method Overloading

•  Two or more methods in the same class
may also have the same name.

•  This technique is known as method
overloading.

27

Overloaded setDate
•  The Date1 class setDate method:

public boolean setDate(int month, int day, int year)

•  Suppose we wanted to change only the day
and year?
– Define another method named setDate:
 public boolean setDate(int day, int year)

(After all, setDate is a good descriptive name for
what this method does.)

28

Date2 Class - Overloaded setDate
Method

public class Date2
{
 public String month;
 public int day; // 1 - 31
 public int year; // 4 digits

 public boolean setDate(int newMonth, int newDay, int newYear)
 {
 // code here
 }

 public boolean setDate(int newDay, int newYear);
 {
 // code here, doesn’t change month
 }

 // toString(), monthString(), etc. follow

}

29

Date2Demo Class
public class Date2Demo
{
 public static void main (String[] args)
 {
 Date2 myDate = new Date2();

 myDate.setDate(1, 23, 1982);
 System.out.println(myDate.toString());
 myDate.setDate(4, 1999);
 System.out.println(myDate.toString());
 }

}

How does Java know which setDate method to invoke?

30

Method Signature
•  A method is uniquely identified by

–  its name and
–  its parameter list (parameter types and their

order).
•  This is known as its signature.

Examples:

public boolean setDate(int newMonth, int newDay, int newYear)
public boolean setDate(String newMonth, int newDay, int newYear)
public boolean setDate(int newDay, int newYear)
public boolean setDate(int newDay, String newMonth)

31

Return Type is Not Enough
•  Suppose we attempt to create an overloaded
setDay() method by using different return types.

 public void setDay(int day) { /* code here */ }
 public boolean setDay(int day) { /* code here */ }

•  This is NOT valid method overloading because the
code that calls setDay() can ignore the return
value.

 birthday.setDay(22);

•  The compiler can’t tell which setDay() method to
invoke.

•  Just because a method returns a value doesn’t
mean the caller has to use it.

32

Too Much of a Good Thing
Automatic type promotion and overloading can

sometimes interact in ways that confuse the
compiler. Example:

public class X {
 //version 1
 public void printAverage (int a, double b) {
 /*code*/
 }

 //version 2
 public void printAverage (double a, int b) {
 /*code*/
 }

}

Why might this be problematic?

33

Too Much of a Good Thing

 public void printAverage (int a, double b) {/*code*/}
 public void printAverage (double a, int b) {/*code*/}

•  Now, consider this:

 X myX = new X();
 myX.printAverage(5, 7);

•  The Java compiler can’t decide whether to:
–  promote 7 to 7.0 and invoke the first version of

printAverage(), or
–  promote 5 to 5.0 and invoke the second.

•  It will throw up its hands and complain
•  Take-home lesson: don’t be too clever with

method overloading

More Documentation

34

Class-level Documentation

•  Class header format:

/**
 * File: Table.java
 * Project: CMSC 206 Assignment 1, Fall 2011
 * Date: 9/29/2011
 * E-mail: jdoe22@brynmawr.edu
 * Class Description:
 * @author Jane Doe
 */

35

Method-level Documentation

•  Method header format:

/**
 * Name: circleArea
 * PreCondition: the radius is greater than zero
 * PostCondition: none
 * @param radius - the radius of the circle
 * @return the calculated area of the circle
 * (@throws – optional)
 */
double circleArea (double radius) {
 // handle unmet precondition
 if (radius < 0.0) {
 return 0.0;
 } else {
 return Math.PI * radius * radius;
 }
}

36

Instance Variable
Documentation

•  Javadoc wants the variable descriptions on line
before actual declaration:

/** first name of the account holder */
String firstName;
/**
 * the last name of the account holder
 * (note we can have a multi-line description).
 */
String lastName;

37

Method Documentation

•  Clear communication with the class user is of
paramount importance so that he can
–  use the appropriate method, and
–  use class methods properly.

•  Method comments:
–  explain what the method does, and
–  describe how to use the method.

•  Two important types of method comments:
–  precondition comments
–  post-conditions comments

38

Preconditions and
Postconditions

•  Precondition
– What is assumed to be true when a method is

called
–  If any pre-condition is not met, the method may

not correctly perform its function.
•  Postcondition

– States what will be true after the method
executes (assuming all pre-conditions are met)

– Describes the side-effect of the method, e.g. if
state of instance changes

39

An Example
Very often the precondition specifies the limits of the

parameters and the postcondition says something
about the return value.

/*
 Pre-condition:
 1 <= month <= 12
 day appropriate for the month
 1000 <= year <= 9999
 Post-condition:
 The month, day, and year of the calling object
 have been set to the parameter values.
 @return true if the calling object has been changed,
 false otherwise

*/
public boolean setDate(int month, int day, int year)
{
 // code here

}

40

