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Example Relational Networks 

Terrorist Network 
(from http://www.orgnet.com/tnet.html) 

Co-Authorship Network of UIST Conference 
(by Lothar Krempel, http://www.mpi-fg-koeln.mpg.de/~lk/netvis/) 

Yeast Metabolic Network 
(from https://www.nd.edu/~networks/cell/) 

Terrorist Network 
(by Valdis Krebs, Orgnet.com) 

School Friendship Network 
(from Moody 2001) 

Protein-Protein Interactions 
(by Peter Uetz) 
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More Relational Networks 

Campaign Contributions 
from Oil Companies 

(from http://oilmoney.priceofoil.org/) 
Flickr Social Network 

(from http://www.flickr.com/photos/ 
gustavog/sets/164006/) 

Genomic Associations 
(from Snel et al., 2002) 

Seagrass Food Web 
(generated at http://drjoe.biology.ecu.edu) 
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Basic Graph Definitions 

n  A graph G = (V,E) consists of a finite set 
of vertices, V, and a finite set of edges, E.  

n  Each edge is a pair (v,w) where v, w ∈ V. 
q  V and E are sets, so each vertex v ∈ V is 

unique, and each edge e ∈ E is unique. 
q  Edges are sometimes called arcs or lines. 
q  Vertices are sometimes called nodes or 

points. 
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Graph Applications 

n  Graphs can  be used to model a wide range 
of applications including 

n  Intersections and streets within a city 
n  Roads/trains/airline routes connecting cities/

countries 
n  Computer networks 
n  Electronic circuits 
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Basic Graph Definitions (2) 
n  A directed graph is a graph in which the 

edges are ordered pairs.  
That is, (u,v) ≠ (v,u), u, v ∈ V.  
Directed graphs are sometimes called 
digraphs. 

n  An undirected graph is a graph in which the 
edges are unordered pairs.  
That is, (u,v) = (v,u). 

n  A sparse graph is one with “few” edges. 
That is |E| = O( |V| ) 

n  A dense graph is one with “many” edges. 
That is |E| = O( |V|2 ) 
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Undirected Graph 

n  All edges are two-way.  Edges are unordered 
pairs. 

n  V = { 1, 2 ,3, 4, 5} 
n  E = { (1,2), (2, 3), (3, 4), (2, 4), (4, 5), (5, 1) } 

2 

1 

3 4 

5 



8 

Directed Graph 
 1 

5 2 

3 4 
n All edges are “one-way” as indicated by the arrows. 

Edges are ordered pairs. 

n V = { 1, 2, 3, 4, 5} 

n E = { (1, 2), (2, 4), (3, 2), (4, 3), (4, 5), (5, 4), (5, 1) } 
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A Single Graph with Multiple 
Components 
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Basic Graph Definitions (3) 

n  Vertex w is adjacent to vertex v if and only if (v, w) 
∈ E.  

n  For undirected graphs, with edge (v, w), and hence 
also (w, v), w is adjacent to v and v is adjacent to 
w. 

n  An edge may also have: 
q  weight or cost -- an associated value 
q  label -- a unique name 

n  The degree of a vertex, v, is the number of 
vertices adjacent to v. Degree is also called 
valence. 



Basic Graph Definitions (4) 

n  For directed graphs vertex w is adjacent to vertex v if 
and only if (v, w) ∈ E. 

n  Indegree of a vertex w is the number of edges (v,w). 
n  OutDegree of a vertex w is the number of edges(w,v). 
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Paths in Graphs 
n  A path in a graph is a sequence of vertices w1, w2, w3, …, wn 

such that (wi, wi+1) ∈ E for 1 ≤ i < n. 
n  The length of a path in a graph is the number of edges on the 

path. The length of the path from a vertex to itself is 0. 
n  A simple path is a path such that all vertices are distinct, except 

that the first and last may be the same. 
n  A cycle in a graph is a path w1, w2, w3, …, wn , w ∈ V such that: 

q  there are at least two vertices on the path 
q  w1 = wn  (the path starts and ends on the same vertex) 
q  if any part of the path contains the subpath wi, wj, wi, then each of 

the edges in the subpath is distinct (i. e., no backtracking along the 
same edge) 

n  A simple cycle is one in which the path is simple. 
n  A directed graph with no cycles is called a directed acyclic 

graph, often abbreviated as DAG 



Paths in Graphs (2) 

n  How many simple paths from 1 to 4 and what 
are their lengths? 

1 

5 2 

3 4 

2 

1 

3 4 

5 

13 



14 

Connectedness in Graphs 

n  An undirected graph is connected if there is a path from 
every vertex to every other vertex. 

n  A directed graph is strongly connected if there is a path 
from every vertex to every other vertex. 

n  A directed graph is weakly connected if there would be 
a path from every vertex to every other vertex, 
disregarding the direction of the edges. 

n  A complete graph is one in which there is an edge 
between every pair of vertices. 

n  A connected component of a graph is any maximal 
connected subgraph. Connected components are 
sometimes simply called components. 
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Disjoint Sets and Graphs 

n  Disjoint sets can be used to determine connected 
components of an undirected graph. 

n  For each edge, place its two vertices (u and v) in the 
same set -- i.e. union( u, v ) 

 
n  When all edges have been examined, the forest of sets 

will represent the connected components. 

n  Two vertices, x, y,  are connected if and only if  
find( x ) = find( y ) 
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Undirected Graph/Disjoint Set Example 

Sets representing connected components 
  { 1, 2, 3, 4, 5 } 

 { 6 } 
 { 7, 8, 9 } 
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DiGraph / Strongly Connected 
Components 

a g b 

h d f c 

i j e 
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A Graph ADT 

n  Has some data elements 
q  Vertices and Edges 

n  Has some operations 
q  getDegree( u ) -- Returns the degree of vertex u 

(outdegree of vertex u in directed graph) 
q  getAdjacent( u ) -- Returns a list of the vertices 

adjacent to  vertex u (list of vertices that u points 
to for a directed graph) 

q  isAdjacentTo( u, v )  -- Returns TRUE if vertex v is 
adjacent to vertex u, FALSE otherwise. 

n  Has some associated algorithms to be 
discussed. 



19 

Adjacency Matrix Implementation 

n  Uses array of size |V| × |V| where each entry (i ,j) is 
boolean  
q  TRUE if there is an edge from vertex i to vertex j 
q  FALSE otherwise 
q  store weights when edges are weighted 

n  Very simple, but large space requirement = O(|V|2) 
n  Appropriate if the graph is dense. 
n  Otherwise, most of the entries in the table are FALSE. 
n  For example, if  a graph is used to represent a street 

map like Manhattan in which most streets run E/W or N/
S, each intersection is attached to only 4 streets and |E|  
< 4*|V|.  If there are 3000 intersections, the table has 
9,000,000 entries of which only 12,000 are TRUE. 
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Undirected Graph / Adjacency Matrix 

1 2 3 4 5
1 0 1 0 0 1
2 1 0 1 1 0
3 0 1 0 1 0
4 0 1 1 0 1
5 1 0 0 1 0
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Directed Graph / Adjacency Matrix 

1 2 3 4 5
1 0 1 0 0 0
2 0 0 0 1 0
3 0 1 0 0 0
4 0 0 1 0 1
5 1 0 0 1 0

1 

5 2 

3 4 
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Weighted, Directed Graph / Adjacency 
Matrix 

1 2 3 4 5
1 0 2 0 0 0
2 0 0 0 6 0
3 0 7 0 0 0
4 0 0 3 0 2
5 8 0 0 5 0

5 2 

3 4 
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Adjacency Matrix Performance 

n  Storage requirement: O
( |V|2 ) 

n  Performance: 
 

  

getDegree ( u ) 

isAdjacentTo( u, v ) 
 
getAdjacent( u ) 
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Adjacency List Implementation 

n  If the graph is sparse, then keeping a list of adjacent 
vertices for each vertex saves space.  Adjacency 
Lists are the commonly used representation.  The 
lists may be stored in a data structure or in the Vertex 
object itself. 
q  Vector of lists: A vector of lists of vertices.  The i-

th element of the vector is a list, Li,  of the vertices 
adjacent to vi. 

n  If the graph is sparse, then the space requirement is  
O( |E| + |V| ), “linear in the size of the graph” 

n  If the graph is dense, then the space requirement is 
O( |V|2 ) 
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Vector of Lists 
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Adjacency List Performance 

n  Storage requirement: 
n  Performance:    

getDegree( u ) 

isAdjacentTo( u, v ) 

getAdjacent( u ) 
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Graph Traversals 

n  Like trees, graphs can be traversed breadth-
first or depth-first. 
q  Use stack (or recursion) for depth-first traversal 
q  Use queue for breadth-first traversal 

n  Unlike trees, we need to specifically guard 
against repeating a path from a cycle. Mark 
each vertex as “visited” when we encounter 
it and do not consider visited vertices more 
than once. 
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Breadth-First Traversal 
void bfs() 
{ 

Queue<Vertex> q; 
Vertex u, w; 
 
for all v in V, d[v] = ∞   // mark each vertex unvisited 
q.enqueue(startvertex);   // start with any vertex 
d[startvertex] = 0;   // mark visited 
while ( !q.isEmpty() ) { 
  u = q.dequeue( ); 
  for each Vertex w adjacent to u { 
   if (d[w] == ∞) {  // w not marked as visited 
      d[w] = d[u]+1; // mark visited 
       path[w] = u;   // where we came from 
        q.enqueue(w); 
   } 
  } 

} 
} 
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Breadth-First Example 

v1 

v2 

v4 

v3 

v5 

∞ 
uq 

∞ 

∞ 

∞ 

∞ 

v1 
0 

1v1  

1v1 
v2 

v3 

2v2  

v4 

v1 v2 v3 v4 

BFS Traversal 
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Unweighted Shortest Path Problem 

n  Unweighted shortest-path problem: Given as input 
an unweighted graph, G = ( V, E ), and a 
distinguished starting vertex, s, find the shortest 
unweighted path from s to every other vertex in G.  

n  After running BFS algorithm with s as starting vertex, 
the length of the shortest path length from s to i is 
given by d[i].  If d[i] = ∞ , then there is no path from s 
to i. The path from s to i is given by traversing path[] 
backwards from i back to s. 
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Recursive Depth First Traversal 

void dfs() { 
 for (each v ∈ V) 

  dfs(v) 

} 

 

void dfs(Vertex v)  

{ 

 if (!v.visited) 

 { 

  v.visited = true; 

  for each Vertex w adjacent to v) 

   if ( !w.visited ) 

    dfs(w) 

 } 

} 
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DFS with explicit stack 
void dfs() 
{ 

 Stack<Vertex> s; 

 Vertex u, w; 

 s.push(startvertex); 

 startvertex.visited = true; 

 while ( !s.isEmpty() ) { 

  u = s.pop(); 

  for each Vertex w adjacent to u { 

   if (!w.visited) { 

    w.visited = true; 

    s.push(w); 

  } 

 } 

} 
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DFS Example 

v1 

v2 

v4 

v3 

v5 

s v1 v2 
v3 

uv4 

v1 v3 v2 v4 

DFS Traversal 
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Traversal Performance 

n  What is the performance of DF and BF 
traversal? 

n  Each vertex appears in the stack or queue 
exactly once in the worst case. Therefore, 
the traversals are at least O( |V| ). 
However, at each vertex, we must find the 
adjacent vertices. Therefore, df- and bf-
traversal performance depends on the 
performance of the getAdjacent 
operation. 
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GetAdjacent 

n  Method 1:  Look at every vertex (except u), 
asking “are you adjacent to u?” 
List<Vertex> L; 
for each Vertex v except u 

 if (v.isAdjacentTo(u)) 

  L.push_back(v); 

 

n  Assuming O(1) performance for 
push_back and  isAdjacentTo, then 
getAdjacent has O( |V| ) performance 
and traversal performance is O( |V2| ); 
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GetAdjacent (2) 
n  Method 2:  Look only at the edges which impinge on 

u. Therefore, at each vertex, the number of vertices 
to be looked at is D(u), the degree of the vertex 

n  This approach is O( D( u ) ). The traversal 
performance is  
 

 since getAdjacent is done O( |V| ) times. 
n  However, in a disconnected graph, we must still look 

at every vertex, so the performance is  O( |V| + |E| ). 

)) ( ( 
1 

v D O 
V 

i 
i = ∑ 

= 
O ( |E| ) 
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Number of Edges 
n  Theorem: The number of edges in an undirected 

graph  G = (V,E ) is O(|V|2) 
n  Proof: Suppose G is fully connected. Let p = |V|.  
n  Then we have the following situation: 

  vertex   connected to 
      1   2,3,4,5,…, p 
      2   1,3,4,5,…, p 
     … 
      p   1,2,3,4,…,p-1 

q  There are p(p-1)/2 = O(|V|2) edges. 
n  So O(|E|) = O(|V|2).  
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Weighted Shortest Path Problem 
Single-source shortest-path problem:  

 Given as input a weighted graph, G = ( V, E ), and a 
distinguished starting vertex, s, find the shortest 
weighted path from s to every other vertex in G. 

Use Dijkstra’s algorithm 
–  Keep tentative distance for each vertex giving 

shortest path length using vertices visited so far. 
–  Record vertex visited before this vertex (to allow 

printing of path). 
–  At each step choose the vertex with smallest 

distance among the unvisited vertices (greedy 
algorithm). 
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Dijkstra’s Algorithm 

n  The pseudo code for Dijkstra’s algorithm assumes the 
following structure for a Vertex object 

 
class Vertex 
{ 

 public List adj;  //Adjacency list 

 public boolean known; 

 public DisType dist;  //DistType is probably int 

 public Vertex path; 
 //Other fields and methods as needed 

} 
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Dijkstra’s Algorithm 
void dijksra(Vertex start) 
{ 
  for each Vertex v in V { 
  v.dist = Integer.MAX_VALUE;  
  v.known = false;  
  v.path = null; 
 } 

 
 start.distance = 0; 

 
 while there are unknown vertices { 
  v = unknown vertex with smallest distance 
  v.known = true; 
  for each Vertex w adjacent to v 
     if (!w.known) 
    if (v.dist + weight(v, w)< w.distance){ 
        decrease(w.dist to v.dist+weight(v, w)) 
     w.path = v; 
    } 
 } 

} 
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Dijkstra Example 
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Correctness of Dijkstra’s Algorithm 
n  The algorithm is correct because of a property of 

shortest paths:  
n  If Pk = v1, v2, ..., vj, vk, is a shortest path from v1 to vk,   

then Pj = v1, v2, ..., vj, must be a shortest path from v1 to 
vj. Otherwise Pk would not be as short as possible since 
Pk extends Pj by just one edge (from vj to vk) 

n   Also, Pj must be shorter than Pk (assuming that all 
edges have positive weights). So the algorithm must 
have found Pj on an earlier iteration than when it found 
Pk.  

n  i.e. Shortest paths can be found by extending earlier 
known shortest paths by single edges, which is what the 
algorithm does.  
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Running Time of Dijkstra’s Algorithm 

n  The running time depends on how the vertices are manipulated. 
n  The main ‘while’ loop runs O( |V| ) time (once per vertex) 
n  Finding the “unknown vertex with smallest distance” (inside the 

while loop) can be a simple linear scan of the vertices and so is also 
O( |V| ).  With this method the total running time is O (|V|2 ).  This is 
acceptable (and perhaps optimal) if the graph is dense ( |E| = O (|V|
2 ) ) since it runs in linear time on the number of edges. 

n  If the graph is sparse, ( |E| = O (|V| ) ), we can use a priority queue 
to select the unknown vertex with smallest distance, using the 
deleteMin operation (O( lg |V| )).  We must also decrease the path 
lengths of some unknown vertices, which is also O( lg|V| ). The 
deleteMin operation is performed for every vertex, and the 
“decrease path length” is performed for every edge, so the running 
time is  
O( |E| lg|V| + |V|lg|V|) = O( (|V|+|E|) lg|V|) = O(|E| lg|V|) if all vertices 
are reachable from the starting vertex 
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Dijkstra and Negative Edges 

n  Note in the previous discussion, we made the 
assumption that all edges have positive weight.  If any 
edge has a negative weight, then Dijkstra’s algorithm 
fails.  Why is this so? 

n  Suppose a vertex, u, is marked as “known”.  This means 
that the shortest path from the starting vertex, s, to u has 
been found. 

n  However, it’s possible that there is negatively weighted 
edge from an unknown vertex, v, back to u.  In that case, 
taking the path from s to v to u is actually shorter than 
the path from s to u without going through v. 

n  Other algorithms exist that handle edges with negative 
weights for weighted shortest-path problem. 
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Directed Acyclic Graphs 

n  A directed acyclic graph is a directed graph 
with no cycles. 

n  A strict partial order R on a set S is a binary 
relation such that  
q  for all a∈S, aRa is false (irreflexive property) 
q  for all a,b,c ∈S, if aRb and bRc then aRc is true 

(transitive property) 
n  To represent a partial order with a DAG: 

q  represent each member of S as a vertex 
q  for each pair of vertices (a,b), insert an edge from 

a to b if and only if aRb 
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More Definitions 

n  Vertex i is a predecessor of vertex j if and only if there is 
a path from i to j. 

n  Vertex i is an immediate predecessor of vertex j if and 
only if ( i, j ) is an edge in the graph. 

n  Vertex j is a successor of vertex i if and only if there is a 
path from i to j. 

n  Vertex j is an immediate successor of vertex i if and 
only if ( i, j ) is an edge in the graph. 

n  The indegree of a vertex, v, is the number of edges (u, 
v),  i.e. the number of edges that come “into” v. 
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Topological Ordering 
n  A topological ordering of the vertices of a 

DAG G = (V,E) is a linear ordering such that, 
for vertices i, j ∈V, if i is a predecessor of j, 
then i precedes j in the linear order, 
i.e. if there is a path from vi to vj, then vi 
comes before vj in the linear order 
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Topological Sort 
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TopSort Example 

1 

6 7 
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8 9 10 

3 4 5 



50 

Running Time of TopSort 

1.  At most, each vertex is enqueued just once, so 
there are O(|V| ) constant time queue 
operations. 

2.  The body of the for loop is executed at most 
once per edges = O( |E| ) 

3.  The initialization is proportional to the size of the 
graph if adjacency lists are used  = O( |E| + |V| ) 

4.  The total running time is therefore O ( |E| + |V| ) 
 


