
CMSC 206

Graphs

2

Example Relational Networks

Terrorist Network
(from http://www.orgnet.com/tnet.html)

Co-Authorship Network of UIST Conference
(by Lothar Krempel, http://www.mpi-fg-koeln.mpg.de/~lk/netvis/)

Yeast Metabolic Network
(from https://www.nd.edu/~networks/cell/)

Terrorist Network
(by Valdis Krebs, Orgnet.com)

School Friendship Network
(from Moody 2001)

Protein-Protein Interactions
(by Peter Uetz)

3

More Relational Networks

Campaign Contributions
from Oil Companies

(from http://oilmoney.priceofoil.org/)
Flickr Social Network

(from http://www.flickr.com/photos/
gustavog/sets/164006/)

Genomic Associations
(from Snel et al., 2002)

Seagrass Food Web
(generated at http://drjoe.biology.ecu.edu)

4

Basic Graph Definitions

n  A graph G = (V,E) consists of a finite set
of vertices, V, and a finite set of edges, E.

n  Each edge is a pair (v,w) where v, w ∈ V.
q  V and E are sets, so each vertex v ∈ V is

unique, and each edge e ∈ E is unique.
q  Edges are sometimes called arcs or lines.
q  Vertices are sometimes called nodes or

points.

5

Graph Applications

n  Graphs can be used to model a wide range
of applications including

n  Intersections and streets within a city
n  Roads/trains/airline routes connecting cities/

countries
n  Computer networks
n  Electronic circuits

6

Basic Graph Definitions (2)
n  A directed graph is a graph in which the

edges are ordered pairs.
That is, (u,v) ≠ (v,u), u, v ∈ V.
Directed graphs are sometimes called
digraphs.

n  An undirected graph is a graph in which the
edges are unordered pairs.
That is, (u,v) = (v,u).

n  A sparse graph is one with “few” edges.
That is |E| = O(|V|)

n  A dense graph is one with “many” edges.
That is |E| = O(|V|2)

7

Undirected Graph

n  All edges are two-way. Edges are unordered
pairs.

n  V = { 1, 2 ,3, 4, 5}
n  E = { (1,2), (2, 3), (3, 4), (2, 4), (4, 5), (5, 1) }

2

1

3 4

5

8

Directed Graph
 1

5 2

3 4
n All edges are “one-way” as indicated by the arrows.

Edges are ordered pairs.

n V = { 1, 2, 3, 4, 5}

n E = { (1, 2), (2, 4), (3, 2), (4, 3), (4, 5), (5, 4), (5, 1) }

9

A Single Graph with Multiple
Components

7

6

9

8
2

1

3 4

5

10

Basic Graph Definitions (3)

n  Vertex w is adjacent to vertex v if and only if (v, w)
∈ E.

n  For undirected graphs, with edge (v, w), and hence
also (w, v), w is adjacent to v and v is adjacent to
w.

n  An edge may also have:
q  weight or cost -- an associated value
q  label -- a unique name

n  The degree of a vertex, v, is the number of
vertices adjacent to v. Degree is also called
valence.

Basic Graph Definitions (4)

n  For directed graphs vertex w is adjacent to vertex v if
and only if (v, w) ∈ E.

n  Indegree of a vertex w is the number of edges (v,w).
n  OutDegree of a vertex w is the number of edges(w,v).

1

5 2

3 4

2

1

3 4

5

11

12

Paths in Graphs
n  A path in a graph is a sequence of vertices w1, w2, w3, …, wn

such that (wi, wi+1) ∈ E for 1 ≤ i < n.
n  The length of a path in a graph is the number of edges on the

path. The length of the path from a vertex to itself is 0.
n  A simple path is a path such that all vertices are distinct, except

that the first and last may be the same.
n  A cycle in a graph is a path w1, w2, w3, …, wn , w ∈ V such that:

q  there are at least two vertices on the path
q  w1 = wn (the path starts and ends on the same vertex)
q  if any part of the path contains the subpath wi, wj, wi, then each of

the edges in the subpath is distinct (i. e., no backtracking along the
same edge)

n  A simple cycle is one in which the path is simple.
n  A directed graph with no cycles is called a directed acyclic

graph, often abbreviated as DAG

Paths in Graphs (2)

n  How many simple paths from 1 to 4 and what
are their lengths?

1

5 2

3 4

2

1

3 4

5

13

14

Connectedness in Graphs

n  An undirected graph is connected if there is a path from
every vertex to every other vertex.

n  A directed graph is strongly connected if there is a path
from every vertex to every other vertex.

n  A directed graph is weakly connected if there would be
a path from every vertex to every other vertex,
disregarding the direction of the edges.

n  A complete graph is one in which there is an edge
between every pair of vertices.

n  A connected component of a graph is any maximal
connected subgraph. Connected components are
sometimes simply called components.

15

Disjoint Sets and Graphs

n  Disjoint sets can be used to determine connected
components of an undirected graph.

n  For each edge, place its two vertices (u and v) in the
same set -- i.e. union(u, v)

n  When all edges have been examined, the forest of sets

will represent the connected components.

n  Two vertices, x, y, are connected if and only if
find(x) = find(y)

16

Undirected Graph/Disjoint Set Example

Sets representing connected components
 { 1, 2, 3, 4, 5 }

 { 6 }
 { 7, 8, 9 }

7

6

9

8
2

1

3 4

5

17

DiGraph / Strongly Connected
Components

a g b

h d f c

i j e

18

A Graph ADT

n  Has some data elements
q  Vertices and Edges

n  Has some operations
q  getDegree(u) -- Returns the degree of vertex u

(outdegree of vertex u in directed graph)
q  getAdjacent(u) -- Returns a list of the vertices

adjacent to vertex u (list of vertices that u points
to for a directed graph)

q  isAdjacentTo(u, v) -- Returns TRUE if vertex v is
adjacent to vertex u, FALSE otherwise.

n  Has some associated algorithms to be
discussed.

19

Adjacency Matrix Implementation

n  Uses array of size |V| × |V| where each entry (i ,j) is
boolean
q  TRUE if there is an edge from vertex i to vertex j
q  FALSE otherwise
q  store weights when edges are weighted

n  Very simple, but large space requirement = O(|V|2)
n  Appropriate if the graph is dense.
n  Otherwise, most of the entries in the table are FALSE.
n  For example, if a graph is used to represent a street

map like Manhattan in which most streets run E/W or N/
S, each intersection is attached to only 4 streets and |E|
< 4*|V|. If there are 3000 intersections, the table has
9,000,000 entries of which only 12,000 are TRUE.

20

Undirected Graph / Adjacency Matrix

1 2 3 4 5
1 0 1 0 0 1
2 1 0 1 1 0
3 0 1 0 1 0
4 0 1 1 0 1
5 1 0 0 1 0

2

1

3 4

5

21

Directed Graph / Adjacency Matrix

1 2 3 4 5
1 0 1 0 0 0
2 0 0 0 1 0
3 0 1 0 0 0
4 0 0 1 0 1
5 1 0 0 1 0

1

5 2

3 4

22

Weighted, Directed Graph / Adjacency
Matrix

1 2 3 4 5
1 0 2 0 0 0
2 0 0 0 6 0
3 0 7 0 0 0
4 0 0 3 0 2
5 8 0 0 5 0

5 2

3 4

8

1

 2

6
7

3

5
 2

23

Adjacency Matrix Performance

n  Storage requirement: O
(|V|2)

n  Performance:

getDegree (u)

isAdjacentTo(u, v)

getAdjacent(u)

24

Adjacency List Implementation

n  If the graph is sparse, then keeping a list of adjacent
vertices for each vertex saves space. Adjacency
Lists are the commonly used representation. The
lists may be stored in a data structure or in the Vertex
object itself.
q  Vector of lists: A vector of lists of vertices. The i-

th element of the vector is a list, Li, of the vertices
adjacent to vi.

n  If the graph is sparse, then the space requirement is
O(|E| + |V|), “linear in the size of the graph”

n  If the graph is dense, then the space requirement is
O(|V|2)

25

Vector of Lists

5 2

3 4

8
1

 2

6
7

3

5

2

2
4

3 5

1
2
3
4
5 1 4

2

26

Adjacency List Performance

n  Storage requirement:
n  Performance:

getDegree(u)

isAdjacentTo(u, v)

getAdjacent(u)

27

Graph Traversals

n  Like trees, graphs can be traversed breadth-
first or depth-first.
q  Use stack (or recursion) for depth-first traversal
q  Use queue for breadth-first traversal

n  Unlike trees, we need to specifically guard
against repeating a path from a cycle. Mark
each vertex as “visited” when we encounter
it and do not consider visited vertices more
than once.

28

Breadth-First Traversal
void bfs()
{

Queue<Vertex> q;
Vertex u, w;

for all v in V, d[v] = ∞ // mark each vertex unvisited
q.enqueue(startvertex); // start with any vertex
d[startvertex] = 0; // mark visited
while (!q.isEmpty()) {
 u = q.dequeue();
 for each Vertex w adjacent to u {
 if (d[w] == ∞) { // w not marked as visited
 d[w] = d[u]+1; // mark visited
 path[w] = u; // where we came from
 q.enqueue(w);
 }
 }

}
}

29

Breadth-First Example

v1

v2

v4

v3

v5

∞
uq

∞

∞

∞

∞

v1
0

1v1

1v1
v2

v3

2v2

v4

v1 v2 v3 v4

BFS Traversal

30

Unweighted Shortest Path Problem

n  Unweighted shortest-path problem: Given as input
an unweighted graph, G = (V, E), and a
distinguished starting vertex, s, find the shortest
unweighted path from s to every other vertex in G.

n  After running BFS algorithm with s as starting vertex,
the length of the shortest path length from s to i is
given by d[i]. If d[i] = ∞ , then there is no path from s
to i. The path from s to i is given by traversing path[]
backwards from i back to s.

31

Recursive Depth First Traversal

void dfs() {
 for (each v ∈ V)

 dfs(v)

}

void dfs(Vertex v)

{

 if (!v.visited)

 {

 v.visited = true;

 for each Vertex w adjacent to v)

 if (!w.visited)

 dfs(w)

 }

}

32

DFS with explicit stack
void dfs()
{

 Stack<Vertex> s;

 Vertex u, w;

 s.push(startvertex);

 startvertex.visited = true;

 while (!s.isEmpty()) {

 u = s.pop();

 for each Vertex w adjacent to u {

 if (!w.visited) {

 w.visited = true;

 s.push(w);

 }

 }

}

33

DFS Example

v1

v2

v4

v3

v5

s v1 v2
v3

uv4

v1 v3 v2 v4

DFS Traversal

34

Traversal Performance

n  What is the performance of DF and BF
traversal?

n  Each vertex appears in the stack or queue
exactly once in the worst case. Therefore,
the traversals are at least O(|V|).
However, at each vertex, we must find the
adjacent vertices. Therefore, df- and bf-
traversal performance depends on the
performance of the getAdjacent
operation.

35

GetAdjacent

n  Method 1: Look at every vertex (except u),
asking “are you adjacent to u?”
List<Vertex> L;
for each Vertex v except u

 if (v.isAdjacentTo(u))

 L.push_back(v);

n  Assuming O(1) performance for
push_back and isAdjacentTo, then
getAdjacent has O(|V|) performance
and traversal performance is O(|V2|);

36

GetAdjacent (2)
n  Method 2: Look only at the edges which impinge on

u. Therefore, at each vertex, the number of vertices
to be looked at is D(u), the degree of the vertex

n  This approach is O(D(u)). The traversal
performance is

 since getAdjacent is done O(|V|) times.
n  However, in a disconnected graph, we must still look

at every vertex, so the performance is O(|V| + |E|).

)) ((
1

v D O
V

i
i = ∑

=
O (|E|)

37

Number of Edges
n  Theorem: The number of edges in an undirected

graph G = (V,E) is O(|V|2)
n  Proof: Suppose G is fully connected. Let p = |V|.
n  Then we have the following situation:

 vertex connected to
 1 2,3,4,5,…, p
 2 1,3,4,5,…, p
 …
 p 1,2,3,4,…,p-1

q  There are p(p-1)/2 = O(|V|2) edges.
n  So O(|E|) = O(|V|2).

38

Weighted Shortest Path Problem
Single-source shortest-path problem:

 Given as input a weighted graph, G = (V, E), and a
distinguished starting vertex, s, find the shortest
weighted path from s to every other vertex in G.

Use Dijkstra’s algorithm
–  Keep tentative distance for each vertex giving

shortest path length using vertices visited so far.
–  Record vertex visited before this vertex (to allow

printing of path).
–  At each step choose the vertex with smallest

distance among the unvisited vertices (greedy
algorithm).

39

Dijkstra’s Algorithm

n  The pseudo code for Dijkstra’s algorithm assumes the
following structure for a Vertex object

class Vertex
{

 public List adj; //Adjacency list

 public boolean known;

 public DisType dist; //DistType is probably int

 public Vertex path;
 //Other fields and methods as needed

}

40

Dijkstra’s Algorithm
void dijksra(Vertex start)
{
 for each Vertex v in V {
 v.dist = Integer.MAX_VALUE;
 v.known = false;
 v.path = null;
 }

 start.distance = 0;

 while there are unknown vertices {
 v = unknown vertex with smallest distance
 v.known = true;
 for each Vertex w adjacent to v
 if (!w.known)
 if (v.dist + weight(v, w)< w.distance){
 decrease(w.dist to v.dist+weight(v, w))
 w.path = v;
 }
 }

}

41

Dijkstra Example

v1 v7 v2

v8 v4 v6 v3

v9 v10 v5

1

3

4

3 1

1

2 7

3

4

1

2

5

6

42

Correctness of Dijkstra’s Algorithm
n  The algorithm is correct because of a property of

shortest paths:
n  If Pk = v1, v2, ..., vj, vk, is a shortest path from v1 to vk,

then Pj = v1, v2, ..., vj, must be a shortest path from v1 to
vj. Otherwise Pk would not be as short as possible since
Pk extends Pj by just one edge (from vj to vk)

n  Also, Pj must be shorter than Pk (assuming that all
edges have positive weights). So the algorithm must
have found Pj on an earlier iteration than when it found
Pk.

n  i.e. Shortest paths can be found by extending earlier
known shortest paths by single edges, which is what the
algorithm does.

43

Running Time of Dijkstra’s Algorithm

n  The running time depends on how the vertices are manipulated.
n  The main ‘while’ loop runs O(|V|) time (once per vertex)
n  Finding the “unknown vertex with smallest distance” (inside the

while loop) can be a simple linear scan of the vertices and so is also
O(|V|). With this method the total running time is O (|V|2). This is
acceptable (and perhaps optimal) if the graph is dense (|E| = O (|V|
2)) since it runs in linear time on the number of edges.

n  If the graph is sparse, (|E| = O (|V|)), we can use a priority queue
to select the unknown vertex with smallest distance, using the
deleteMin operation (O(lg |V|)). We must also decrease the path
lengths of some unknown vertices, which is also O(lg|V|). The
deleteMin operation is performed for every vertex, and the
“decrease path length” is performed for every edge, so the running
time is
O(|E| lg|V| + |V|lg|V|) = O((|V|+|E|) lg|V|) = O(|E| lg|V|) if all vertices
are reachable from the starting vertex

44

Dijkstra and Negative Edges

n  Note in the previous discussion, we made the
assumption that all edges have positive weight. If any
edge has a negative weight, then Dijkstra’s algorithm
fails. Why is this so?

n  Suppose a vertex, u, is marked as “known”. This means
that the shortest path from the starting vertex, s, to u has
been found.

n  However, it’s possible that there is negatively weighted
edge from an unknown vertex, v, back to u. In that case,
taking the path from s to v to u is actually shorter than
the path from s to u without going through v.

n  Other algorithms exist that handle edges with negative
weights for weighted shortest-path problem.

45

Directed Acyclic Graphs

n  A directed acyclic graph is a directed graph
with no cycles.

n  A strict partial order R on a set S is a binary
relation such that
q  for all a∈S, aRa is false (irreflexive property)
q  for all a,b,c ∈S, if aRb and bRc then aRc is true

(transitive property)
n  To represent a partial order with a DAG:

q  represent each member of S as a vertex
q  for each pair of vertices (a,b), insert an edge from

a to b if and only if aRb

46

More Definitions

n  Vertex i is a predecessor of vertex j if and only if there is
a path from i to j.

n  Vertex i is an immediate predecessor of vertex j if and
only if (i, j) is an edge in the graph.

n  Vertex j is a successor of vertex i if and only if there is a
path from i to j.

n  Vertex j is an immediate successor of vertex i if and
only if (i, j) is an edge in the graph.

n  The indegree of a vertex, v, is the number of edges (u,
v), i.e. the number of edges that come “into” v.

47

Topological Ordering
n  A topological ordering of the vertices of a

DAG G = (V,E) is a linear ordering such that,
for vertices i, j ∈V, if i is a predecessor of j,
then i precedes j in the linear order,
i.e. if there is a path from vi to vj, then vi
comes before vj in the linear order

48

Topological Sort

49

TopSort Example

1

6 7

2

8 9 10

3 4 5

50

Running Time of TopSort

1.  At most, each vertex is enqueued just once, so
there are O(|V|) constant time queue
operations.

2.  The body of the for loop is executed at most
once per edges = O(|E|)

3.  The initialization is proportional to the size of the
graph if adjacency lists are used = O(|E| + |V|)

4.  The total running time is therefore O (|E| + |V|)

