
Lists, Stacks and Queues

Stacks and Queues

2

Stacks

n  A restricted list where insertions and
deletions can only be performed at one
location, the end of the list (top).

n  LIFO – Last In First Out
q  Laundry Basket – last thing you put in is the first

thing you remove
q  Plates – remove from the top of the stack and add

to the top of the stack

3

Stack ADT

n  Basic operations are
push, pop, and top

Stack Model

4

Adapting Lists to Implement Stacks

n  Adapter Design Pattern
n  Allow a client to use a class whose interface

is different from the one expected by the
client

n  Do not modify client or class, write adapter
class that sits between them

n  In this case, the List is an adapter for the
Stack. The client (user) calls methods of the
Stack which in turn calls appropriate List
method(s).

5

Client (Stack user)

Stack (adapter)

List (adaptee)

theStack.push(10)

theList.add(0, 10) ;

Adapter Model for Stack

6

Queues
n  Restricted List

q  only add to head
q  only remove from tail

n  Examples

q  line waiting for service
q  jobs waiting to print

n  Implement as an adapter of List

7

Queue ADT

n  Basic Operations are enqueue and dequeue

8

Client (Queue user)

List (adaptee)

theQ.enqueue(10)

theList.add(theList.size() -1, 10)

Queue (adapter)

Adapter Model for Queue

9

Circular Queue

•  Adapter pattern may be impractical
•  Overhead for creating, deleting nodes
•  Max size of queue is often known

•  A circular queue is a fixed size array
•  Slots in array reused after elements dequeued

10

Circular Queue Data
•  A fixed size array
•  Control Variables

q  arraySize
q  the fixed size (capacity) of the array
q  currentSize
q  the current number of items in the queue
q  Initialized to 0
q  front
q  the array index from which the next item will be dequeued.
q  Initialized to 0
q  back
q  the array index last item that was enqueued
q  Initialized to -1

11

Circular Queue Psuedocode
n  void enqueue(Object x) {
n  if currentSize == arraySize, throw exception // Q

is full
n  back = (back + 1) % arraySize;

n  array[back] = x;

n  ++currentSize;

n  }

n  Object dequeue() {

n  if currentSize == 0, throw exception // Q
is empty

n  --currentSize;

n  Object x = array[front];

n  front = (front + 1) % arraySize

n  return x;

n  }

12

Circular Queue Example

 0 1 2 3
4 5

Trace the contents of the array and the values of currentSize, front and
back after each of the following operations.

1. enqueue(12) 7. enqueue(42)

2. enqueue(17) 8. dequeue()

3. enqueue(43) 9. enqueue(33)

4. enqueue(62) 10. enqueue(18)

5. dequeue() 11. enqueue(99)

6. dequeue()

