
CMSC 206 

Inheritance, Abstract Classes, and 
Interfaces 



Class Reuse 
n  We have seen how classes (and their code) 

can be reused with composition. 
q  An object has another object as one (or more) of its instance 

variables. 

n  Composition models the “has a” relationship.   
q  A Person has a String (name) 
q  A Car has an Engine 
q  A Book has an array of Pages 

2 



Object Relationships 
 

n  An object can be a specialized version of another object. 
q  A Car is a Vehicle 
q  A Triangle is a Shape 
q  A Doctor is a Person 
q  A Student is a Person 
 

This kind of relationship is known as the “is a type of” relationship. 
 

n  In OOP, this relationship is modeled with the 
programming technique known as inheritance. 

n  Inheritance creates new classes by adding code to an 
existing class.  The existing class is reused without 
modification. 

3 



Introduction to Inheritance 
n  Inheritance is one of the main techniques of OOP. 

n  Using inheritance 
q  a very general class is first defined, 

q  then more specialized versions of the class are defined by 
n  adding instance variables and/or 
n  adding methods. 

q  The specialized classes are said to inherit the methods and 
instance variables of the general class. 

4 



A Class Hierarchy 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
  

n  There is often a natural hierarchy when designing 
certain classes. 

5 



Derived Classes 
n  All employees have certain characteristics in 

common: 
q  a name and a hire date 
q  the methods for setting and changing the names and hire 

dates 

n  Some employees have specialized characteristics: 
q  Pay 

n  hourly employees are paid an hourly wage 
n  salaried employees are paid a fixed wage 

q  Calculating wages for these two different groups would be 
different. 

6 



Inheritance and OOP 
n  Inheritance is an abstraction for  

q  sharing similarities among classes (name and 
hireDate), and 

q  preserving their differences (how they get paid). 

n  Inheritance allows us to group classes into 
families of related types (Employees), allowing 
for the sharing of common operations and 
data.  

 

7 



General Classes 

n  A class called Employee can be defined that 
includes all employees. 
q  This class can then be used as a foundation to define 

classes for hourly employees and salaried employees. 
n  The HourlyEmployee class can be used to define a 

PartTimeHourlyEmployee class, and so forth. 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
   8 



The Employee Class 
 
/** 
 Class Invariant: All objects have a name string and hire date. 
 A name string of "No name" indicates no real name specified yet. 
 A hire date of Jan 1, 1000 indicates no real hire date specified yet. 
*/ 
public class Employee 
{ 
    private String name; 
    private Date hireDate; 
 

 // no-argument constructor 
    public Employee( ) 
    { 
         name = "No name"; 
         hireDate = new Date("Jan", 1, 1000); //Just a placeholder. 
    } 

 // alternate constructor 
    public Employee(String theName, Date theDate)  { /* code here */ } 
 

 // copy constructor 
    public Employee(Employee originalObject)  { /* code here */ } 
 

        (continued) 
 

9 



Employee Class 
 
 // some accessors and mutators 

    public String getName( )    { /* code here */ } 
    public Date getHireDate( )    { /* code here */ } 
    public void setName(String newName)  { /* code here */ } 
    public void setHireDate(Date newDate)  { /* code here */ } 
 
 // everyone gets the same raise 
 public double calcRaise( ) 
  { return 200.00; } 

 
 // toString and equals 

    public String toString( )    { /* code here */ } 
    public boolean equals(Employee otherEmployee) 
  { /* code here */ } 

     
}  // end of Employee Class 
 

10 



Derived Classes 
n  Since an hourly employee “is an” employee, we want our 

class HourlyEmployee to be defined as a derived class 
of the class Employee. 
q  A derived class is defined by adding instance variables and/or 

methods to an existing class. 

q  The class that the derived class is built upon is called the base 
class. 

q  The phrase extends BaseClass must be added to the derived 
class definition: 

 

 public class HourlyEmployee extends Employee 
 

n  In OOP, a base class/derived class relationship is 
alternatively referred to by the term pairs: 
q  superclass/subclass 
q  parent class/child class 

 
11 



HourlyEmployee Class 
 
/** 
 Class Invariant: All objects have a name string, hire date,  
nonnegative  wage rate, and nonnegative number of hours worked. */ 
 
public class HourlyEmployee extends Employee  
{ 

 // instance variables unique to HourlyEmployee 
    private double wageRate;  
    private double hours; //for the month 
 

 // no-argument Constructor 
 public HourlyEmployee( )     { /* code here */} 

 
 // alternative constructor 
 public HourlyEmployee(String theName, Date theDate, 

      double theWageRate, double theHours)   { /* code here */} 
 

 // copy constructor 
    public HourlyEmployee(HourlyEmployee originalHE)  { /* code here */} 
 
 

        (continued) 

12 



HourlyEmployee Class 
 
 // accessors and mutator specific to HourlyEmployee 

 
 public double getRate( )    { /* code here */ } 

   public double getHours( )    { /* code here */ } 
 public void setHours(double hoursWorked)  { /* code here */ } 

   public void setRate(double newWageRate)  { /* code here */ } 
 
 // toString and equals specific for HourlyEmployee 

   public String toString( )    { /* code here */ } 
   public boolean  
  equals(HourlyEmployee otherHE)  { /* code here */ } 

 
}  // end of HourlyEmployee Class 
 

13 



Inherited Members 
n  The derived class inherits all of the  

q  public methods (and private methods, indirectly),  
q  public and private instance variables, and  
q  public and private static variables 
 from the base class. 
 

n  Definitions for the inherited variables and methods do 
not appear in the derived class’s definition. 
q  The code is reused without having to explicitly copy it, unless the 

creator of the derived class redefines one or more of the base 
class methods. 

n  All instance variables, static variables, and/or methods 
defined directly in the derived class’s definition are 
added to those inherited from the base class 

14 



Using HourlyEmployee 
public class HourlyEmployeeExample 
{ 

public static void main(String[] args) 
{ 
   HourlyEmployee joe = 

 new HourlyEmployee("Joe Worker", new Date(1, 1, 2004), 50.50, 160); 
 

 // getName is defined in Employee 
   System.out.println("joe's name is " + joe.getName( )); 
 

 // setName is defined in Employee 
   System.out.println("Changing joe's name to Josephine."); 
   joe.setName("Josephine"); 
 

 // setRate is specific for HourlyEmployee 
 System.out.println(“Giving Josephine a raise”); 
 joe.setRate( 65.00 ); 

 
 // calcRaise is defined in Employee 
 double raise = joe.calcRaise( ); 
 System.out.println(“Joe’s raise is “ + raise ); 

 } 
} 
 

15 



Overriding a Method Definition 
n  A derived class can change or override an 

inherited method. 

n  In order to override an inherited method, a 
new method definition is placed in the 
derived class definition. 

n  For example, perhaps the HourlyEmployee 
class had its own way to calculate raises.  It 
could override Employee’s calcRaise( ) 
method by defining its own. 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
   16 



Overriding Example 
public class Employee 
{ 

 .... 
 public double calcRaise() { return 200.00; } 

} 
 
public class HourlyEmployee extends Employee 
{ 

 . . . . 
 // overriding calcRaise – same signature as in Employee 
 public double calcRaise() { return 500.00; } 

} 
 
Now, this code 

   
 HourlyEmployee joe = new HourlyEmployee(); 
 double raise = joe.calcRaise(); 

 
invokes the overridden calcRaise() method in the HourlyEmployee class rather than the 

calcRaise() method in the Employee class 
 
To override a method in the derived class, the overriding method must have the same method 

signature as the base class method. 

17 



Overriding Versus Overloading 

n  Do not confuse overriding a method in a derived 
class with overloading a method name. 

q  When a method in a derived class has the same signature 
as the method in the base class, that is overriding. 

q  When a method in a derived class or the same class has a 
different signature from the method in the base class or the 
same class, that is overloading. 

q  Note that when the derived class overrides or overloads the 
original method, it still inherits the original method from the 
base class as well (we’ll see this later). 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
   18 



The final Modifier 

n  If the modifier final is placed before the 
definition of a method, then that method may 
not be overridden in a derived class. 

 
n  It the modifier final is placed before the 

definition of a class, then that class may not 
be used as a base class to derive other 
classes. 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
   19 



Pitfall: Use of Private Instance Variables from a Base Class 

n  An instance variable that is private in a base class is not 
accessible by name in a method definition of a derived 
class. 
q  An object of the HourlyEmployee class cannot access the 

private instance variable hireDate by name, even though it is 
inherited from the Employee base class. 

n  Instead, a private instance variable of the base class 
can only be accessed by the public accessor and 
mutator methods defined in that class. 
q  An object of the HourlyEmployee class can use the 

getHireDate() or setHireDate() methods to access 
hireDate. 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
   20 



Encapsulation and Inheritance Pitfall:  
 Use of Private Instance Variables from a Base Class 

n  If private instance variables of a class were 
accessible in method definitions of a derived 
class, … 
q  then anytime someone wanted to access a private 

instance variable, they would only need to create a 
derived class, and access the variables in a method of 
that class. 

n  This would allow private instance variables to be 
changed by mistake or in inappropriate ways. 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
   21 



Pitfall:  Private Methods Are Effectively Not Inherited 

n  The private methods of the base class are like private variables 
in terms of not being directly available. 

n  A private method is completely unavailable, unless invoked 
indirectly. 
q  This is possible only if an object of a derived class invokes a 

public method of the base class that happens to invoke the 
private method. 

n  This should not be a problem because private methods should 
be used only as helper methods. 
q  If a method is not just a helper method, then it should be public. 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
   22 



Protected Access 
n  If a method or instance variable is modified by protected 

(rather than public or private), then it can be accessed by 
name 
q  Inside its own class definition  
q  Inside any class derived from it 
q  In the definition of any class in the same package 

n  The protected modifier provides very weak protection 
compared to the private modifier 
q  It allows direct access to any programmer who defines a suitable 

derived class 
q  Therefore, instance variables should normally not be marked 

protected 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
   23 



“Package” Access 
n  If a method or instance variable has no visibility modifier 

(public private, or protected), it is said to have “package 
access”, and it can be accessed by name 
q  Inside its own class definition  
q  In the definition of any class in the same package 
q  BUT NOT inside any class derived from it 

n  So, the implicit “package” access provides slightly stronger 
protection than the protected modifier, but is still very weak 
compared to the private modifier 
q  By design, it is used when a set of classes closely cooperate to 

create a unified interface 
q  By default, it is used by novice programmers to get started 

without worrying about visibility modifiers or packages 

24 



Inherited Constructors? 
 An Employee constructor cannot be used to 

create HourlyEmployee objects. Why not? 
 
We must implement a specialized constructor 

for HourlyEmployees. But how can the 
HourlyEmployee constructor initialize the  
private instance variables in the Employee 
class since it doesn’t have direct access? 

 

25 



The super Constructor 

n  A derived class uses a constructor from the base class 
to initialize all the data inherited from the base class 
q  In order to invoke a constructor from the base class, it 

uses a special syntax: 
  public DerivedClass(int p1, int p2, double p3)   
  { 
    super(p1, p2); 
    derivedClassInstanceVariable = p3; 
  } 

q  In the above example, super(p1, p2); is a call to 
the base class constructor 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
   26 



The super Constructor 
n  A call to the base class constructor can never use 

the name of the base class, but uses the keyword 
super instead 

n  A call to super must always be the first action taken 
in a constructor definition 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
   27 



The super Constructor 
n  If a derived class constructor does not include an 

invocation of super, then the no-argument 
constructor of the base class will automatically be 
invoked 
q  This can result in an error if the base class has not defined 

a no-argument constructor 
n  Since the inherited instance variables should be 

initialized, and the base class constructor is 
designed to do that, an explicit call to super should 
almost always be used. 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
   28 



HourlyEmployee Constructor 
 
public class HourlyEmployee extends Employee 
{ 
 private double wageRate; 
 private double hours;  // for the month 

 
 // the no-argument constructor invokes 
 // the Employee (super) no-argument constructor 
 // to initialize the Employee instance variables 
 // then initializes the HourlyEmployee instance variables 

 
 public HourlyEmployee() 

    { 
        super(); 
        wageRate = 0; 
        hours = 0; 
    } 

29 



HourlyEmployee Constructor 
 // the alternative HourlyEmployee constructor invokes an 
 // appropriate Employee (super) constructor to initialize 
 // the Employee instance variables (name and date), and then 
 // initializes the HourlyEmployee rate and hours 

 
 public HourlyEmployee(String theName, Date theDate, 

                       double theWageRate, double theHours) 
    { 
         super(theName, theDate); 
         if ((theWageRate >= 0) && (theHours >= 0)) 
         { 
             wageRate = theWageRate; 
             hours = theHours; 
         } 
         else 
         { 
   System.exit(0); 

         } 
    } 

30 



Review of Rules For Constructors 
n  Constructors can chain to other constructors: 

q  in own class, by invoking this(…); 
q  in parent class, by invoking super(…); 

n  If there is an explicit call to this(…) or super(…), 
it must be the very first statement in the body 
q  It must come even before any local variable declarations 

n  You can call either this() or super(), but not both 
n  If you don’t have explicit call to this() or super(), an 

implicit call to a no-arg super() is implicitly inserted 
n  Implied by above rules: 

At least one constructor will be called at each class 
level up the inheritance hierarchy, all the way to the 
top (Object) 

31 



Access to a Redefined Base Method 

n  Within the definition of a method of a derived class, 
the base class version of an overridden method of the 
base class can still be invoked 
q  Simply preface the method name with super and a dot 
  
// HourlyEmployee’s toString( ) might be 
public String toString( ) 
{ 
  return (super.toString() + "$" + getRate( )); 
} 
 

n  However, using an object of the derived class outside 
of its class definition, there is no way to invoke the 
base class version of an overridden method 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
   32 



You Cannot Use Multiple supers 
n  It is only valid to use super to invoke a method from a 

direct parent 
q  Repeating super will not invoke a method from some 

other ancestor class 
n  For example, if the Employee class were derived from 

the class Person, and the HourlyEmployee class 
were derived form the class Employee , it would not 
be possible to invoke the toString method of the 
Person class within a method of the 
HourlyEmployee class 

super.super.toString() // ILLEGAL! 

n  Ensures that each class has complete control 
over its interface 
 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
   33 



Base/Derived Class Summary 

Assume that class D (Derived) is derived from class B (Base). 
1.   Every object of type D is a B, but not vice versa. 

2.   D is a more specialized version of B. 

3.   Anywhere an object of type B can be used, an object of type D 
can be used just as well, but not vice versa.  

 
 
 
 
(Adapted from: Effective C++, 2nd edition, pg. 155)  

34 



Tip:  Static Variables Are Inherited 
n  Static variables in a base class are inherited 

by any of its derived classes 
n  The modifiers public, private, and 
protected have the same meaning for 
static variables as they do for instance 
variables 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
   35 



The Class Object 
n  In Java, every class is a descendent of the class 
Object 
q  Object is the root of the entire Java class hierarchy  
q  Every class has Object as its ancestor 
q  Every object of every class is of type Object, as well as 

being of the type of its own class (and also all classes in 
between) 

n  If a class is defined that is not explicitly a derived 
class of another class, it is by default a derived class 
of the class Object  

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
   36 



The Class Object 
n  The class Object is in the package java.lang 

which is always imported automatically 
n  Having an Object class enables methods to be 

written with a parameter of type Object 
q  A parameter of type Object can be replaced by an object 

of any class whatsoever 
q  For example, some library methods accept an argument of 

type Object so they can be used with an argument that is 
an object of any class 

q  Recall the ArrayList class (an old form of it) we studied 
earlier: the store and retrieve methods were declared to 
work on instances of type Object 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
   37 



The Class Object 
n  The class Object has some methods that every Java class 

inherits 
q  For example, the equals and toString methods 
 

n  Every object inherits these methods from some ancestor class  
q  Either the class Object itself, or a class that itself inherited these 

methods (ultimately) from the class Object  
 

n  However, these inherited methods should be overridden with 
definitions more appropriate to a given class 
q  Some Java library classes assume that every class has its own 

version of such methods 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
   38 



The Right Way to Define equals 
n  Since the equals method is always inherited from 

the class Object, methods like the following simply 
overload it: 
public boolean equals(Employee otherEmployee) 
 { . . . } 

 

n  However, this method should be overridden, not 
just overloaded: 
public boolean equals(Object otherObject) 
 { . . . } 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
   39 



The Right Way to Define equals 
n  The overridden version of equals must meet the 

following conditions 
q  The parameter otherObject of type Object must be 

type cast to the given class (e.g., Employee) 

q  However, the new method should only do this if 
otherObject really is an object of that class, and if 
otherObject is not equal to null 

 
q  Finally, it should compare each of the instance variables of 

both objects  

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
   40 



A Better equals Method for the Class Employee 

public boolean equals(Object otherObject) 
{ 
  if(otherObject == null) 
    return false; 
  else if(getClass( ) != otherObject.getClass( )) 
    return false; 
  else 
  { 
    Employee otherEmployee = (Employee)otherObject; 
    return (name.equals(otherEmployee.name) &&  
      hireDate.equals(otherEmployee.hireDate)); 
  } 
} 
 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
   41 



The getClass() Method 
n  Every object inherits the same getClass() method 

from the Object class 
q  This method is marked final, so it cannot be overridden 

n  An invocation of getClass() on an object returns a 
representation only of the class that was used with 
new to create the object 
q  The results of any two such invocations can be compared 

with == or != to determine whether or not they represent 
the exact same class 
(object1.getClass() == object2.getClass()) 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
   42 



Why equals() Must be Overridden 

Imagine we have: 
public class Point { 
  public int x, y; 
  … // Stuff here like constructors, etc. 
  public boolean equals(Point otherPt) { 
    return (x == otherPt.x && y == otherPt.y); 
  } 
} 
public class Point3D extends Point { 
  public int z; 
  public boolean equals(Point3D otherPt) { 
    return (x == otherPt.x && y == otherPt.y && z == otherPt.z); 
  } 
} 
  … 
  Point pt2d = new Point(1.0, 2.0); 
  Point3D pt3d = new Point3D(1.0, 2.0, 3.0); 
  if (pt3D.equals(pt2D)) 
    System.out.println(“pt2d and pt3D equal”); 
 

What will it print out? 
 
 43 



Basic Class Hierarchy Design 
n  How many levels of classes should we create? 

q  Two extremes: 
n  MovableThing -> A1981BlueMiataWithBlackVinylTop  vs. 
n  Vehicle->Car->Car2Door->Convertible2Door->Miata->BlueMiata->… 
n  or something in between, perhaps?  Yes… 

n  Create intermediate classes where you do—or might 
later—want to make a distinction that splits the tree 

n  It is easier to create than take away intermediate 
classes. 

n  What to put at a given level? 
q  Maximize abstracting out common elements 
q  But, think about future splits, and what is appropriate at 

given level 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
   44 



Animal Hierarchy 

Animal 

Dog Cat Pig 

45 



Animals That Speak 
public class Animal  
{ 
 public void speak( int x ) 
{ System.out.println(“ Animal “ + x );} 

} 
public class Dog extends Animal 
{ 
 public void speak (int x ) 
 { System.out.println( “Dog “ + x ); } 

} 
public class Cat extends Animal 
{ 

public void speak (int x ) 
 { System.out.println( “Cat “ + x ); } 

} 
public class Pig extends Animal 
{ 

public void speak (int x ) 
 { System.out.println( “Pig “ + x ); } 

} 
 

46 



The ZooDemo Class 

In the ZooDemo, we ask each Animal to say hello to 
the audience. 

 
public class ZooDemo 
{ 
 // Overloaded type-specific sayHello method 
 // for each kind of Animal 

 
 public static void sayHello( Dog d, int i ) 

 { d.speak( i ); } 
 
 public static void sayHello( Cat c, int i ) 

 { c.speak( i ); } 
 
 public static void sayHello( Pig p, int i) 

 { p.speak( i ); } 
 
 

        (continued) 

47 



The ZooDemo Class 

 public static void main( String[ ] args ) 
{ 

  Dog dusty = new Dog( ); 
  Cat fluffy = new Cat( ); 
  Pig sam = new Pig( ); 

 
  sayHello( dusty, 7 ); 
  sayHello( fluffy, 17 ); 
  sayHello( sam, 27 ); 
 } 

} // end Zoo Demo 
 
//------- output ----- 
Dog 7 
Cat 17 
Pig 27 
 

48 



Problems with ZooDemo? 
n  The ZooDemo class contains a type-specific 

version of sayHello for each type of Animal. 

n  What if we add more types of Animals? 

n  Wouldn’t it be nice to write just one sayHello 
method that works for all animals? 

n  This is called Polymorphism 

49 



New ZooDemo 
public class ZooDemo 
{ 
 // One sayHello method whose parameter  
 // is the base class works for all Animals 
  
 public static void sayHello( Animal a, int x ) 

 { a.speak( x ); } 
 
 public static void main( String[ ] args ) 
{ 

  Dog dusty = new Dog( ); 
  Cat fluffy = new Cat( ); 
  Pig sam = new Pig( ); 

 
  sayHello( dusty, 7 ); 
  sayHello( fluffy, 17 ); 
  sayHello( sam, 27 ); 
 } 

} 

50 



Introduction to Abstract Classes 
n  An abstract method is like a placeholder for a method that will be 

fully defined in a descendent class. 

q  It postpones the definition of a method. 
q  It has a complete method heading to which the modifier abstract 

has been added. 
q  It cannot be private. 
q  It has no method body, and ends with a semicolon in place of its 

body. 
 

  public abstract double getPay(); 
  public abstract void doIt(int count); 

q  The body of the method is defined in the derived classes. 

n  The class that contains an abstract method is called an abstract 
class. 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
   51 



Abstract Class 
n  A class that has at least one abstract method is 

called an abstract class. 

n  An abstract class must have the modifier abstract 
included in its class heading. 
 

 
public abstract class Employee 
{ 
  private instanceVariables; 
  . . . 
  public abstract double getPay(); 
  . . . 
} 
   

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
   52 



Abstract Class 
n  An abstract class can have any number of abstract 

and/or fully defined methods. 

n  If a derived class of an abstract class adds to or 
does not define all of the abstract methods, 
q  it is abstract also, and  
q  must add abstract to its modifier. 

n  A class that has no abstract methods is called a 
concrete class. 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
   53 



Abstract Employee Class 

public abstract class Employee 
{ 
  private String name; 
  private Date hireDate; 
 public abstract double getPay( ); 

 
 // constructors, accessors, mutators, equals, toString 

 
 public boolean samePay(Employee other) 
 { 
  return(this.getPay() == other.getPay()); 
 } 

 
} 

54 



Pitfall:  You Cannot Create Instances of an Abstract 
Class 
n  An abstract class can only be used to derive more 

specialized classes. 

q  While it may be useful to discuss employees in general, in 
reality an employee must be a salaried worker or an hourly 
worker 

n  An abstract class constructor cannot be used to 
create an object of the abstract class. 

q  However, a derived class constructor will include an 
invocation of the abstract class constructor in the form of 
super. 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
   55 



An Abstract Class Is a Type 
n  Although an object of an abstract class cannot be 

created, it is perfectly fine to have a parameter of an 
abstract class type. 
q  This makes it possible to plug in an object of any of its 

descendent classes. 

n  It is also fine to use a variable of an abstract class 
type, as long is it names objects of its concrete 
descendent classes only. 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
   56 



Additional Topics/Questions 
n  Are constructors inherited? 
n  What happens when a child redefines an 

instance variable? 
q  Variables do not overload or override: they “hide” 
q  What happens if: 

n  parent: “public int x”, child: “public String x” 
n  parent: “public int x:, child: “private int x” 
n  à then: child-of-child: “x = 42” 

n  Do private methods inherit/obey polymorphism? 
n  Can a child class define a private method with 

the same signature as an inherited method? 

57 



Additional Topics/Questions 
n  What happens when a parent’s method is 

called? 
q  Recall: parent method can be triggered through 

inheritance, or via super.someMethod() 
q  What happens w/call to myOverriddenMethod() in 

parent? 
q  What happens w/call to private method in parent? 

n  …when child has same-named private method? 
n  …when child has same-named public method? 

58 



Classes and Methods 
n  When a class defines its methods as public, it 

describes how the class user interacts with the 
method. 

n  These public methods form the class’ interface . 
n  An abstract class contains one or more methods 

with only an interface – no method body is provided. 
n  Java allows us to take this concept one step further. 

59 



Interfaces 

n  An interface is something like an extreme 
abstract class. 

n  All of the methods in an interface are abstract 
– they have no implementations. 

n  An interface  
q  has no instance variables.   
q  Only defines methods. 
q  is NOT a class. 
q  is a type that can be satisfied by any class that 

implements the interface 

60 



Interfaces 
n  The syntax for defining an interface is similar to 

that of defining a class 
q  Except the word interface is used in place 

of class 

n  An interface specifies a set of methods that any 
class that implements the interface must have 
q  It contains method headings (and optionally 

static final constant definitions) only 
q  It contains no instance variables nor any 

complete method definitions 
 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
   61 



Interfaces 
n  An interface and all of its method headings should be 

declared public 
 

n  When a class implements an interface, it must make all 
the methods in the interface public. 

 
n  Because an interface is a type, a method may be written 

with a parameter of an interface type 
q  That parameter will accept as an argument any class 

that implements the interface 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
   62 



Implementing an Interface 
n  To create a class that implements all the 

methods defined in an interface, use the 
keyword implements. 

n  Whereas interface defines the headings for 
methods that must be defined, a class that 
implements the interface defines how the 
methods work. 

63 



The Animal Interface 
public interface Animal  
{ 

 public void eat( ); 
} 

 

Yes, animals do more than eat, but we’re 
trying to make this a simple example. 

64 



Interfaces 
n  To implement an interface, a concrete class must do 

two things: 
 

1.  It must include the phrase 
implements Interface_Name 

at the start of the class definition 
–  If more than one interface is implemented, 

each is listed, separated by commas 
2.  The class must implement all the method 

headings listed in the definition(s) of the 
interface(s) 

 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
   65 



Implementing Animal 
// Lion and Snake implement the required eat( ) method 
public class Lion implements Animal  
{ 

 public void eat()  
  { System.out.println("Lions Devour"); } 

} 

public class Snake implements Animal  
{ 
 public void eat()  
  { System.out.println( "Snakes swallow whole"); } 

} 
 

66 



Implementing Animal 
// Dog implements the required eat( ) method and has 
// some of its own methods and instance variables 
public class Dog implements Animal { 
 private String name; 
 Dog(String newName)  
  {name = newName;} 
 public void eat()  
  {System.out.println("Dog chews a bone");} 

} 
 
// Poodle is derived from Dog, so it inherits eat( ) 
// Adds a method of its own 
public class Poodle extends Dog  
{ 
 Poodle( String name )  
  { super(name); }  // call Dog constructor 

 
 public String toString( ) 
  { return "Poodle"; } 

} 
 

67 



Implementing Animal 
// Using classes that implement Animal 
public class Jungle { 
 public static void feed( Animal a ) 
  { a.eat(); } 
  
 public static void main( String[] args ){ 
  Animal[ ] animals = { 
   new Lion( ), 
   new Poodle( "Fluffy“ ), 
   new Dog( "Max“ ), 
   new Snake( ) 
  }; 
  for (int i = 0; i < animals.length; i++) 
   feed( animals[ i ] ); 
 } 

} 
 
// --- Output 
Lions Devour 
Dog chews a bone 
Dog chews a bone 
Snakes swallow whole 
 
 

68 



Extending an Interface 
n  An new interface can add method definitions to an 

existing interface by extending the old 
 
interface TiredAnimal extends Animal 

{ 
 public void sleep( ); 

} 
 

The TiredAnimal interface includes both eat( ) and 
sleep( ); 

 

69 



Implementing Multiple Interfaces 

n  Recall the Animal interface from earlier 
public interface Animal 
{ 
 public void eat( ); 

} 
 
n  Define the Cat interface 
public interface Cat 
{ 
 void purr( );  // public by default; 

} 
// since a Lion is an Animal and a Cat, Lion may wish 
// to implement both interfaces 
public class Lion implements Animal, Cat 
{ 
 public void eat( ) {System.out.println(“Big Gulps”);} 
 public void purr( ) {System.out.println(“ROOOAAAR!”);} 

} 

Just separate the  
Interface names with a 
comma 

70 



Inconsistent Interfaces 
n  In Java, a class can have only one base class 

q  This prevents any inconsistencies arising from different 
definitions having the same method heading 

n  In addition, a class may implement any number of 
interfaces 
q  Since interfaces do not have method bodies, the above 

problem cannot arise 
q  However, there are other types of inconsistencies that can 

arise 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
   71 



Inconsistent Interfaces 
n  When a class implements two interfaces: 

q  Inconsistency will occur if the interfaces contain methods 
with the same name but different return types 

n  If a class definition implements two inconsistent 
interfaces, then that is an error, and the class 
definition is illegal 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
   72 



The Comparable Interface 

n  The Comparable interface is in the java.lang 
package, and so is automatically available to  any 
program 

n  It has only the following method heading that must 
be implemented (note the Object parameter) 
public int compareTo(Object other); 

n  It is the programmer's responsibility to follow the 
semantics of the Comparable interface when 
implementing it 

n  When implementing compareTo, you would of 
course overload it by using an appropriate 
parameter type 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
   73 



The Comparable Interface Semantics 

n  The method compareTo() must return 
q  A negative number if the calling object "comes before" 

the parameter other 
q  A zero if the calling object "equals" the parameter 

other 
q  A positive number if the calling object "comes after" 

the parameter other 
 

n  If the parameter other is not of the same type 
as the class being defined, then a 
ClassCastException should be thrown 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
   74 



The Comparable Interface Semantics 

n  Almost any reasonable notion of "comes 
before" is acceptable 
q  In particular, all of the standard less-than relations 

on numbers and lexicographic ordering on strings 
are suitable 

n  The relationship "comes after" is just the 
reverse of "comes before" 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
   75 



compareTo for Person 

public class Person implements Comparable 
{ 

 private String name; 
 ... 
 public int compareTo( Object obj ) 

 { 
  Person p = (Person)obj; 
  return name.compareTo(p.name); 

 } 
 .... 

}   

If obj is not a Person object a 
ClassCastException 
 will be thrown 

Comparing the names using 
String’s compareTo method 

76 



Using Comparable 
// prints the index of the smallest Integer in an array 
// Note use of Integer, not int 
public class FindSmallest { 
 public static void main( String[ ] args) 
 { 
  // find the smallest Integer in an array 
  // Integer (implements Comparable ) 
  int index = 0;  // index of smallest value 
  Integer[ ] values = { 
   new Integer(144), new Integer(200), new Integer(99),  

  new Integer(42),  new Integer(132) }; 
  for (int i = 1; i < values.length; i++) 
  { 
   if ( values[ i ].compareTo( values[ index ] ) < 0 ) 
    index = i; 
  } 
  System.out.println("Index of smallest value is “ + index); 
 } 

} 
 

77 


