
CMSC 206 

Inheritance, Abstract Classes, and 
Interfaces 



Class Reuse 
n  We have seen how classes (and their code) 

can be reused with composition. 
q  An object has another object as one (or more) of its instance 

variables. 

n  Composition models the “has a” relationship.   
q  A Person has a String (name) 
q  A Car has an Engine 
q  A Book has an array of Pages 
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Object Relationships 
 

n  An object can be a specialized version of another object. 
q  A Car is a Vehicle 
q  A Triangle is a Shape 
q  A Doctor is a Person 
q  A Student is a Person 
 

This kind of relationship is known as the “is a type of” relationship. 
 

n  In OOP, this relationship is modeled with the 
programming technique known as inheritance. 

n  Inheritance creates new classes by adding code to an 
existing class.  The existing class is reused without 
modification. 
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Introduction to Inheritance 
n  Inheritance is one of the main techniques of OOP. 

n  Using inheritance 
q  a very general class is first defined, 

q  then more specialized versions of the class are defined by 
n  adding instance variables and/or 
n  adding methods. 

q  The specialized classes are said to inherit the methods and 
instance variables of the general class. 
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A Class Hierarchy 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
  

n  There is often a natural hierarchy when designing 
certain classes. 
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Derived Classes 
n  All employees have certain characteristics in 

common: 
q  a name and a hire date 
q  the methods for setting and changing the names and hire 

dates 

n  Some employees have specialized characteristics: 
q  Pay 

n  hourly employees are paid an hourly wage 
n  salaried employees are paid a fixed wage 

q  Calculating wages for these two different groups would be 
different. 
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Inheritance and OOP 
n  Inheritance is an abstraction for  

q  sharing similarities among classes (name and 
hireDate), and 

q  preserving their differences (how they get paid). 

n  Inheritance allows us to group classes into 
families of related types (Employees), allowing 
for the sharing of common operations and 
data.  
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General Classes 

n  A class called Employee can be defined that 
includes all employees. 
q  This class can then be used as a foundation to define 

classes for hourly employees and salaried employees. 
n  The HourlyEmployee class can be used to define a 

PartTimeHourlyEmployee class, and so forth. 
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The Employee Class 
 
/** 
 Class Invariant: All objects have a name string and hire date. 
 A name string of "No name" indicates no real name specified yet. 
 A hire date of Jan 1, 1000 indicates no real hire date specified yet. 
*/ 
public class Employee 
{ 
    private String name; 
    private Date hireDate; 
 

 // no-argument constructor 
    public Employee( ) 
    { 
         name = "No name"; 
         hireDate = new Date("Jan", 1, 1000); //Just a placeholder. 
    } 

 // alternate constructor 
    public Employee(String theName, Date theDate)  { /* code here */ } 
 

 // copy constructor 
    public Employee(Employee originalObject)  { /* code here */ } 
 

        (continued) 
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Employee Class 
 
 // some accessors and mutators 

    public String getName( )    { /* code here */ } 
    public Date getHireDate( )    { /* code here */ } 
    public void setName(String newName)  { /* code here */ } 
    public void setHireDate(Date newDate)  { /* code here */ } 
 
 // everyone gets the same raise 
 public double calcRaise( ) 
  { return 200.00; } 

 
 // toString and equals 

    public String toString( )    { /* code here */ } 
    public boolean equals(Employee otherEmployee) 
  { /* code here */ } 

     
}  // end of Employee Class 
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Derived Classes 
n  Since an hourly employee “is an” employee, we want our 

class HourlyEmployee to be defined as a derived class 
of the class Employee. 
q  A derived class is defined by adding instance variables and/or 

methods to an existing class. 

q  The class that the derived class is built upon is called the base 
class. 

q  The phrase extends BaseClass must be added to the derived 
class definition: 

 

 public class HourlyEmployee extends Employee 
 

n  In OOP, a base class/derived class relationship is 
alternatively referred to by the term pairs: 
q  superclass/subclass 
q  parent class/child class 
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HourlyEmployee Class 
 
/** 
 Class Invariant: All objects have a name string, hire date,  
nonnegative  wage rate, and nonnegative number of hours worked. */ 
 
public class HourlyEmployee extends Employee  
{ 

 // instance variables unique to HourlyEmployee 
    private double wageRate;  
    private double hours; //for the month 
 

 // no-argument Constructor 
 public HourlyEmployee( )     { /* code here */} 

 
 // alternative constructor 
 public HourlyEmployee(String theName, Date theDate, 

      double theWageRate, double theHours)   { /* code here */} 
 

 // copy constructor 
    public HourlyEmployee(HourlyEmployee originalHE)  { /* code here */} 
 
 

        (continued) 
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HourlyEmployee Class 
 
 // accessors and mutator specific to HourlyEmployee 

 
 public double getRate( )    { /* code here */ } 

   public double getHours( )    { /* code here */ } 
 public void setHours(double hoursWorked)  { /* code here */ } 

   public void setRate(double newWageRate)  { /* code here */ } 
 
 // toString and equals specific for HourlyEmployee 

   public String toString( )    { /* code here */ } 
   public boolean  
  equals(HourlyEmployee otherHE)  { /* code here */ } 

 
}  // end of HourlyEmployee Class 
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Inherited Members 
n  The derived class inherits all of the  

q  public methods (and private methods, indirectly),  
q  public and private instance variables, and  
q  public and private static variables 
 from the base class. 
 

n  Definitions for the inherited variables and methods do 
not appear in the derived class’s definition. 
q  The code is reused without having to explicitly copy it, unless the 

creator of the derived class redefines one or more of the base 
class methods. 

n  All instance variables, static variables, and/or methods 
defined directly in the derived class’s definition are 
added to those inherited from the base class 

14 



Using HourlyEmployee 
public class HourlyEmployeeExample 
{ 

public static void main(String[] args) 
{ 
   HourlyEmployee joe = 

 new HourlyEmployee("Joe Worker", new Date(1, 1, 2004), 50.50, 160); 
 

 // getName is defined in Employee 
   System.out.println("joe's name is " + joe.getName( )); 
 

 // setName is defined in Employee 
   System.out.println("Changing joe's name to Josephine."); 
   joe.setName("Josephine"); 
 

 // setRate is specific for HourlyEmployee 
 System.out.println(“Giving Josephine a raise”); 
 joe.setRate( 65.00 ); 

 
 // calcRaise is defined in Employee 
 double raise = joe.calcRaise( ); 
 System.out.println(“Joe’s raise is “ + raise ); 

 } 
} 
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Overriding a Method Definition 
n  A derived class can change or override an 

inherited method. 

n  In order to override an inherited method, a 
new method definition is placed in the 
derived class definition. 

n  For example, perhaps the HourlyEmployee 
class had its own way to calculate raises.  It 
could override Employee’s calcRaise( ) 
method by defining its own. 
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Overriding Example 
public class Employee 
{ 

 .... 
 public double calcRaise() { return 200.00; } 

} 
 
public class HourlyEmployee extends Employee 
{ 

 . . . . 
 // overriding calcRaise – same signature as in Employee 
 public double calcRaise() { return 500.00; } 

} 
 
Now, this code 

   
 HourlyEmployee joe = new HourlyEmployee(); 
 double raise = joe.calcRaise(); 

 
invokes the overridden calcRaise() method in the HourlyEmployee class rather than the 

calcRaise() method in the Employee class 
 
To override a method in the derived class, the overriding method must have the same method 

signature as the base class method. 
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Overriding Versus Overloading 

n  Do not confuse overriding a method in a derived 
class with overloading a method name. 

q  When a method in a derived class has the same signature 
as the method in the base class, that is overriding. 

q  When a method in a derived class or the same class has a 
different signature from the method in the base class or the 
same class, that is overloading. 

q  Note that when the derived class overrides or overloads the 
original method, it still inherits the original method from the 
base class as well (we’ll see this later). 
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The final Modifier 

n  If the modifier final is placed before the 
definition of a method, then that method may 
not be overridden in a derived class. 

 
n  It the modifier final is placed before the 

definition of a class, then that class may not 
be used as a base class to derive other 
classes. 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
   19 



Pitfall: Use of Private Instance Variables from a Base Class 

n  An instance variable that is private in a base class is not 
accessible by name in a method definition of a derived 
class. 
q  An object of the HourlyEmployee class cannot access the 

private instance variable hireDate by name, even though it is 
inherited from the Employee base class. 

n  Instead, a private instance variable of the base class 
can only be accessed by the public accessor and 
mutator methods defined in that class. 
q  An object of the HourlyEmployee class can use the 

getHireDate() or setHireDate() methods to access 
hireDate. 
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Encapsulation and Inheritance Pitfall:  
 Use of Private Instance Variables from a Base Class 

n  If private instance variables of a class were 
accessible in method definitions of a derived 
class, … 
q  then anytime someone wanted to access a private 

instance variable, they would only need to create a 
derived class, and access the variables in a method of 
that class. 

n  This would allow private instance variables to be 
changed by mistake or in inappropriate ways. 
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Pitfall:  Private Methods Are Effectively Not Inherited 

n  The private methods of the base class are like private variables 
in terms of not being directly available. 

n  A private method is completely unavailable, unless invoked 
indirectly. 
q  This is possible only if an object of a derived class invokes a 

public method of the base class that happens to invoke the 
private method. 

n  This should not be a problem because private methods should 
be used only as helper methods. 
q  If a method is not just a helper method, then it should be public. 
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Protected Access 
n  If a method or instance variable is modified by protected 

(rather than public or private), then it can be accessed by 
name 
q  Inside its own class definition  
q  Inside any class derived from it 
q  In the definition of any class in the same package 

n  The protected modifier provides very weak protection 
compared to the private modifier 
q  It allows direct access to any programmer who defines a suitable 

derived class 
q  Therefore, instance variables should normally not be marked 

protected 
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“Package” Access 
n  If a method or instance variable has no visibility modifier 

(public private, or protected), it is said to have “package 
access”, and it can be accessed by name 
q  Inside its own class definition  
q  In the definition of any class in the same package 
q  BUT NOT inside any class derived from it 

n  So, the implicit “package” access provides slightly stronger 
protection than the protected modifier, but is still very weak 
compared to the private modifier 
q  By design, it is used when a set of classes closely cooperate to 

create a unified interface 
q  By default, it is used by novice programmers to get started 

without worrying about visibility modifiers or packages 
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Inherited Constructors? 
 An Employee constructor cannot be used to 

create HourlyEmployee objects. Why not? 
 
We must implement a specialized constructor 

for HourlyEmployees. But how can the 
HourlyEmployee constructor initialize the  
private instance variables in the Employee 
class since it doesn’t have direct access? 
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The super Constructor 

n  A derived class uses a constructor from the base class 
to initialize all the data inherited from the base class 
q  In order to invoke a constructor from the base class, it 

uses a special syntax: 
  public DerivedClass(int p1, int p2, double p3)   
  { 
    super(p1, p2); 
    derivedClassInstanceVariable = p3; 
  } 

q  In the above example, super(p1, p2); is a call to 
the base class constructor 
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The super Constructor 
n  A call to the base class constructor can never use 

the name of the base class, but uses the keyword 
super instead 

n  A call to super must always be the first action taken 
in a constructor definition 
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The super Constructor 
n  If a derived class constructor does not include an 

invocation of super, then the no-argument 
constructor of the base class will automatically be 
invoked 
q  This can result in an error if the base class has not defined 

a no-argument constructor 
n  Since the inherited instance variables should be 

initialized, and the base class constructor is 
designed to do that, an explicit call to super should 
almost always be used. 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
   28 



HourlyEmployee Constructor 
 
public class HourlyEmployee extends Employee 
{ 
 private double wageRate; 
 private double hours;  // for the month 

 
 // the no-argument constructor invokes 
 // the Employee (super) no-argument constructor 
 // to initialize the Employee instance variables 
 // then initializes the HourlyEmployee instance variables 

 
 public HourlyEmployee() 

    { 
        super(); 
        wageRate = 0; 
        hours = 0; 
    } 
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HourlyEmployee Constructor 
 // the alternative HourlyEmployee constructor invokes an 
 // appropriate Employee (super) constructor to initialize 
 // the Employee instance variables (name and date), and then 
 // initializes the HourlyEmployee rate and hours 

 
 public HourlyEmployee(String theName, Date theDate, 

                       double theWageRate, double theHours) 
    { 
         super(theName, theDate); 
         if ((theWageRate >= 0) && (theHours >= 0)) 
         { 
             wageRate = theWageRate; 
             hours = theHours; 
         } 
         else 
         { 
   System.exit(0); 

         } 
    } 
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Review of Rules For Constructors 
n  Constructors can chain to other constructors: 

q  in own class, by invoking this(…); 
q  in parent class, by invoking super(…); 

n  If there is an explicit call to this(…) or super(…), 
it must be the very first statement in the body 
q  It must come even before any local variable declarations 

n  You can call either this() or super(), but not both 
n  If you don’t have explicit call to this() or super(), an 

implicit call to a no-arg super() is implicitly inserted 
n  Implied by above rules: 

At least one constructor will be called at each class 
level up the inheritance hierarchy, all the way to the 
top (Object) 
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Access to a Redefined Base Method 

n  Within the definition of a method of a derived class, 
the base class version of an overridden method of the 
base class can still be invoked 
q  Simply preface the method name with super and a dot 
  
// HourlyEmployee’s toString( ) might be 
public String toString( ) 
{ 
  return (super.toString() + "$" + getRate( )); 
} 
 

n  However, using an object of the derived class outside 
of its class definition, there is no way to invoke the 
base class version of an overridden method 
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You Cannot Use Multiple supers 
n  It is only valid to use super to invoke a method from a 

direct parent 
q  Repeating super will not invoke a method from some 

other ancestor class 
n  For example, if the Employee class were derived from 

the class Person, and the HourlyEmployee class 
were derived form the class Employee , it would not 
be possible to invoke the toString method of the 
Person class within a method of the 
HourlyEmployee class 

super.super.toString() // ILLEGAL! 

n  Ensures that each class has complete control 
over its interface 
 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
   33 



Base/Derived Class Summary 

Assume that class D (Derived) is derived from class B (Base). 
1.   Every object of type D is a B, but not vice versa. 

2.   D is a more specialized version of B. 

3.   Anywhere an object of type B can be used, an object of type D 
can be used just as well, but not vice versa.  

 
 
 
 
(Adapted from: Effective C++, 2nd edition, pg. 155)  
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Tip:  Static Variables Are Inherited 
n  Static variables in a base class are inherited 

by any of its derived classes 
n  The modifiers public, private, and 
protected have the same meaning for 
static variables as they do for instance 
variables 
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The Class Object 
n  In Java, every class is a descendent of the class 
Object 
q  Object is the root of the entire Java class hierarchy  
q  Every class has Object as its ancestor 
q  Every object of every class is of type Object, as well as 

being of the type of its own class (and also all classes in 
between) 

n  If a class is defined that is not explicitly a derived 
class of another class, it is by default a derived class 
of the class Object  
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The Class Object 
n  The class Object is in the package java.lang 

which is always imported automatically 
n  Having an Object class enables methods to be 

written with a parameter of type Object 
q  A parameter of type Object can be replaced by an object 

of any class whatsoever 
q  For example, some library methods accept an argument of 

type Object so they can be used with an argument that is 
an object of any class 

q  Recall the ArrayList class (an old form of it) we studied 
earlier: the store and retrieve methods were declared to 
work on instances of type Object 
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The Class Object 
n  The class Object has some methods that every Java class 

inherits 
q  For example, the equals and toString methods 
 

n  Every object inherits these methods from some ancestor class  
q  Either the class Object itself, or a class that itself inherited these 

methods (ultimately) from the class Object  
 

n  However, these inherited methods should be overridden with 
definitions more appropriate to a given class 
q  Some Java library classes assume that every class has its own 

version of such methods 
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The Right Way to Define equals 
n  Since the equals method is always inherited from 

the class Object, methods like the following simply 
overload it: 
public boolean equals(Employee otherEmployee) 
 { . . . } 

 

n  However, this method should be overridden, not 
just overloaded: 
public boolean equals(Object otherObject) 
 { . . . } 
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The Right Way to Define equals 
n  The overridden version of equals must meet the 

following conditions 
q  The parameter otherObject of type Object must be 

type cast to the given class (e.g., Employee) 

q  However, the new method should only do this if 
otherObject really is an object of that class, and if 
otherObject is not equal to null 

 
q  Finally, it should compare each of the instance variables of 

both objects  
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A Better equals Method for the Class Employee 

public boolean equals(Object otherObject) 
{ 
  if(otherObject == null) 
    return false; 
  else if(getClass( ) != otherObject.getClass( )) 
    return false; 
  else 
  { 
    Employee otherEmployee = (Employee)otherObject; 
    return (name.equals(otherEmployee.name) &&  
      hireDate.equals(otherEmployee.hireDate)); 
  } 
} 
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The getClass() Method 
n  Every object inherits the same getClass() method 

from the Object class 
q  This method is marked final, so it cannot be overridden 

n  An invocation of getClass() on an object returns a 
representation only of the class that was used with 
new to create the object 
q  The results of any two such invocations can be compared 

with == or != to determine whether or not they represent 
the exact same class 
(object1.getClass() == object2.getClass()) 
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Why equals() Must be Overridden 

Imagine we have: 
public class Point { 
  public int x, y; 
  … // Stuff here like constructors, etc. 
  public boolean equals(Point otherPt) { 
    return (x == otherPt.x && y == otherPt.y); 
  } 
} 
public class Point3D extends Point { 
  public int z; 
  public boolean equals(Point3D otherPt) { 
    return (x == otherPt.x && y == otherPt.y && z == otherPt.z); 
  } 
} 
  … 
  Point pt2d = new Point(1.0, 2.0); 
  Point3D pt3d = new Point3D(1.0, 2.0, 3.0); 
  if (pt3D.equals(pt2D)) 
    System.out.println(“pt2d and pt3D equal”); 
 

What will it print out? 
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Basic Class Hierarchy Design 
n  How many levels of classes should we create? 

q  Two extremes: 
n  MovableThing -> A1981BlueMiataWithBlackVinylTop  vs. 
n  Vehicle->Car->Car2Door->Convertible2Door->Miata->BlueMiata->… 
n  or something in between, perhaps?  Yes… 

n  Create intermediate classes where you do—or might 
later—want to make a distinction that splits the tree 

n  It is easier to create than take away intermediate 
classes. 

n  What to put at a given level? 
q  Maximize abstracting out common elements 
q  But, think about future splits, and what is appropriate at 

given level 
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Animal Hierarchy 

Animal 

Dog Cat Pig 
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Animals That Speak 
public class Animal  
{ 
 public void speak( int x ) 
{ System.out.println(“ Animal “ + x );} 

} 
public class Dog extends Animal 
{ 
 public void speak (int x ) 
 { System.out.println( “Dog “ + x ); } 

} 
public class Cat extends Animal 
{ 

public void speak (int x ) 
 { System.out.println( “Cat “ + x ); } 

} 
public class Pig extends Animal 
{ 

public void speak (int x ) 
 { System.out.println( “Pig “ + x ); } 

} 
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The ZooDemo Class 

In the ZooDemo, we ask each Animal to say hello to 
the audience. 

 
public class ZooDemo 
{ 
 // Overloaded type-specific sayHello method 
 // for each kind of Animal 

 
 public static void sayHello( Dog d, int i ) 

 { d.speak( i ); } 
 
 public static void sayHello( Cat c, int i ) 

 { c.speak( i ); } 
 
 public static void sayHello( Pig p, int i) 

 { p.speak( i ); } 
 
 

        (continued) 
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The ZooDemo Class 

 public static void main( String[ ] args ) 
{ 

  Dog dusty = new Dog( ); 
  Cat fluffy = new Cat( ); 
  Pig sam = new Pig( ); 

 
  sayHello( dusty, 7 ); 
  sayHello( fluffy, 17 ); 
  sayHello( sam, 27 ); 
 } 

} // end Zoo Demo 
 
//------- output ----- 
Dog 7 
Cat 17 
Pig 27 
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Problems with ZooDemo? 
n  The ZooDemo class contains a type-specific 

version of sayHello for each type of Animal. 

n  What if we add more types of Animals? 

n  Wouldn’t it be nice to write just one sayHello 
method that works for all animals? 

n  This is called Polymorphism 
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New ZooDemo 
public class ZooDemo 
{ 
 // One sayHello method whose parameter  
 // is the base class works for all Animals 
  
 public static void sayHello( Animal a, int x ) 

 { a.speak( x ); } 
 
 public static void main( String[ ] args ) 
{ 

  Dog dusty = new Dog( ); 
  Cat fluffy = new Cat( ); 
  Pig sam = new Pig( ); 

 
  sayHello( dusty, 7 ); 
  sayHello( fluffy, 17 ); 
  sayHello( sam, 27 ); 
 } 

} 
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Introduction to Abstract Classes 
n  An abstract method is like a placeholder for a method that will be 

fully defined in a descendent class. 

q  It postpones the definition of a method. 
q  It has a complete method heading to which the modifier abstract 

has been added. 
q  It cannot be private. 
q  It has no method body, and ends with a semicolon in place of its 

body. 
 

  public abstract double getPay(); 
  public abstract void doIt(int count); 

q  The body of the method is defined in the derived classes. 

n  The class that contains an abstract method is called an abstract 
class. 
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Abstract Class 
n  A class that has at least one abstract method is 

called an abstract class. 

n  An abstract class must have the modifier abstract 
included in its class heading. 
 

 
public abstract class Employee 
{ 
  private instanceVariables; 
  . . . 
  public abstract double getPay(); 
  . . . 
} 
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Abstract Class 
n  An abstract class can have any number of abstract 

and/or fully defined methods. 

n  If a derived class of an abstract class adds to or 
does not define all of the abstract methods, 
q  it is abstract also, and  
q  must add abstract to its modifier. 

n  A class that has no abstract methods is called a 
concrete class. 
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Abstract Employee Class 

public abstract class Employee 
{ 
  private String name; 
  private Date hireDate; 
 public abstract double getPay( ); 

 
 // constructors, accessors, mutators, equals, toString 

 
 public boolean samePay(Employee other) 
 { 
  return(this.getPay() == other.getPay()); 
 } 

 
} 
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Pitfall:  You Cannot Create Instances of an Abstract 
Class 
n  An abstract class can only be used to derive more 

specialized classes. 

q  While it may be useful to discuss employees in general, in 
reality an employee must be a salaried worker or an hourly 
worker 

n  An abstract class constructor cannot be used to 
create an object of the abstract class. 

q  However, a derived class constructor will include an 
invocation of the abstract class constructor in the form of 
super. 
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An Abstract Class Is a Type 
n  Although an object of an abstract class cannot be 

created, it is perfectly fine to have a parameter of an 
abstract class type. 
q  This makes it possible to plug in an object of any of its 

descendent classes. 

n  It is also fine to use a variable of an abstract class 
type, as long is it names objects of its concrete 
descendent classes only. 
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Additional Topics/Questions 
n  Are constructors inherited? 
n  What happens when a child redefines an 

instance variable? 
q  Variables do not overload or override: they “hide” 
q  What happens if: 

n  parent: “public int x”, child: “public String x” 
n  parent: “public int x:, child: “private int x” 
n  à then: child-of-child: “x = 42” 

n  Do private methods inherit/obey polymorphism? 
n  Can a child class define a private method with 

the same signature as an inherited method? 
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Additional Topics/Questions 
n  What happens when a parent’s method is 

called? 
q  Recall: parent method can be triggered through 

inheritance, or via super.someMethod() 
q  What happens w/call to myOverriddenMethod() in 

parent? 
q  What happens w/call to private method in parent? 

n  …when child has same-named private method? 
n  …when child has same-named public method? 
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Classes and Methods 
n  When a class defines its methods as public, it 

describes how the class user interacts with the 
method. 

n  These public methods form the class’ interface . 
n  An abstract class contains one or more methods 

with only an interface – no method body is provided. 
n  Java allows us to take this concept one step further. 
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Interfaces 

n  An interface is something like an extreme 
abstract class. 

n  All of the methods in an interface are abstract 
– they have no implementations. 

n  An interface  
q  has no instance variables.   
q  Only defines methods. 
q  is NOT a class. 
q  is a type that can be satisfied by any class that 

implements the interface 
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Interfaces 
n  The syntax for defining an interface is similar to 

that of defining a class 
q  Except the word interface is used in place 

of class 

n  An interface specifies a set of methods that any 
class that implements the interface must have 
q  It contains method headings (and optionally 

static final constant definitions) only 
q  It contains no instance variables nor any 

complete method definitions 
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Interfaces 
n  An interface and all of its method headings should be 

declared public 
 

n  When a class implements an interface, it must make all 
the methods in the interface public. 

 
n  Because an interface is a type, a method may be written 

with a parameter of an interface type 
q  That parameter will accept as an argument any class 

that implements the interface 
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Implementing an Interface 
n  To create a class that implements all the 

methods defined in an interface, use the 
keyword implements. 

n  Whereas interface defines the headings for 
methods that must be defined, a class that 
implements the interface defines how the 
methods work. 
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The Animal Interface 
public interface Animal  
{ 

 public void eat( ); 
} 

 

Yes, animals do more than eat, but we’re 
trying to make this a simple example. 
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Interfaces 
n  To implement an interface, a concrete class must do 

two things: 
 

1.  It must include the phrase 
implements Interface_Name 

at the start of the class definition 
–  If more than one interface is implemented, 

each is listed, separated by commas 
2.  The class must implement all the method 

headings listed in the definition(s) of the 
interface(s) 
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Implementing Animal 
// Lion and Snake implement the required eat( ) method 
public class Lion implements Animal  
{ 

 public void eat()  
  { System.out.println("Lions Devour"); } 

} 

public class Snake implements Animal  
{ 
 public void eat()  
  { System.out.println( "Snakes swallow whole"); } 

} 
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Implementing Animal 
// Dog implements the required eat( ) method and has 
// some of its own methods and instance variables 
public class Dog implements Animal { 
 private String name; 
 Dog(String newName)  
  {name = newName;} 
 public void eat()  
  {System.out.println("Dog chews a bone");} 

} 
 
// Poodle is derived from Dog, so it inherits eat( ) 
// Adds a method of its own 
public class Poodle extends Dog  
{ 
 Poodle( String name )  
  { super(name); }  // call Dog constructor 

 
 public String toString( ) 
  { return "Poodle"; } 

} 
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Implementing Animal 
// Using classes that implement Animal 
public class Jungle { 
 public static void feed( Animal a ) 
  { a.eat(); } 
  
 public static void main( String[] args ){ 
  Animal[ ] animals = { 
   new Lion( ), 
   new Poodle( "Fluffy“ ), 
   new Dog( "Max“ ), 
   new Snake( ) 
  }; 
  for (int i = 0; i < animals.length; i++) 
   feed( animals[ i ] ); 
 } 

} 
 
// --- Output 
Lions Devour 
Dog chews a bone 
Dog chews a bone 
Snakes swallow whole 
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Extending an Interface 
n  An new interface can add method definitions to an 

existing interface by extending the old 
 
interface TiredAnimal extends Animal 

{ 
 public void sleep( ); 

} 
 

The TiredAnimal interface includes both eat( ) and 
sleep( ); 
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Implementing Multiple Interfaces 

n  Recall the Animal interface from earlier 
public interface Animal 
{ 
 public void eat( ); 

} 
 
n  Define the Cat interface 
public interface Cat 
{ 
 void purr( );  // public by default; 

} 
// since a Lion is an Animal and a Cat, Lion may wish 
// to implement both interfaces 
public class Lion implements Animal, Cat 
{ 
 public void eat( ) {System.out.println(“Big Gulps”);} 
 public void purr( ) {System.out.println(“ROOOAAAR!”);} 

} 

Just separate the  
Interface names with a 
comma 
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Inconsistent Interfaces 
n  In Java, a class can have only one base class 

q  This prevents any inconsistencies arising from different 
definitions having the same method heading 

n  In addition, a class may implement any number of 
interfaces 
q  Since interfaces do not have method bodies, the above 

problem cannot arise 
q  However, there are other types of inconsistencies that can 

arise 
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Inconsistent Interfaces 
n  When a class implements two interfaces: 

q  Inconsistency will occur if the interfaces contain methods 
with the same name but different return types 

n  If a class definition implements two inconsistent 
interfaces, then that is an error, and the class 
definition is illegal 
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The Comparable Interface 

n  The Comparable interface is in the java.lang 
package, and so is automatically available to  any 
program 

n  It has only the following method heading that must 
be implemented (note the Object parameter) 
public int compareTo(Object other); 

n  It is the programmer's responsibility to follow the 
semantics of the Comparable interface when 
implementing it 

n  When implementing compareTo, you would of 
course overload it by using an appropriate 
parameter type 
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The Comparable Interface Semantics 

n  The method compareTo() must return 
q  A negative number if the calling object "comes before" 

the parameter other 
q  A zero if the calling object "equals" the parameter 

other 
q  A positive number if the calling object "comes after" 

the parameter other 
 

n  If the parameter other is not of the same type 
as the class being defined, then a 
ClassCastException should be thrown 
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The Comparable Interface Semantics 

n  Almost any reasonable notion of "comes 
before" is acceptable 
q  In particular, all of the standard less-than relations 

on numbers and lexicographic ordering on strings 
are suitable 

n  The relationship "comes after" is just the 
reverse of "comes before" 
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compareTo for Person 

public class Person implements Comparable 
{ 

 private String name; 
 ... 
 public int compareTo( Object obj ) 

 { 
  Person p = (Person)obj; 
  return name.compareTo(p.name); 

 } 
 .... 

}   

If obj is not a Person object a 
ClassCastException 
 will be thrown 

Comparing the names using 
String’s compareTo method 
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Using Comparable 
// prints the index of the smallest Integer in an array 
// Note use of Integer, not int 
public class FindSmallest { 
 public static void main( String[ ] args) 
 { 
  // find the smallest Integer in an array 
  // Integer (implements Comparable ) 
  int index = 0;  // index of smallest value 
  Integer[ ] values = { 
   new Integer(144), new Integer(200), new Integer(99),  

  new Integer(42),  new Integer(132) }; 
  for (int i = 1; i < values.length; i++) 
  { 
   if ( values[ i ].compareTo( values[ index ] ) < 0 ) 
    index = i; 
  } 
  System.out.println("Index of smallest value is “ + index); 
 } 

} 
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