

Data Structures

Tying Up Loose Ends
D.S. Blank
Fall 2010

Data Structures

● Object Oriented Programming
● Sorting

Object Oriented Programming

● Suppose that you want an object almost like
another, but want to “extend” it

● Consider that you have a Student class, but
now you want to have a Teacher class with
additional methods

● What to do?

Object Oriented Programming

● Suppose that you want an object almost like
another, but want to “extend” it

● Consider that you have a Student class, but
now you want to have a Teacher class with
additional methods

● What to do?
● Use Inheritance (sometimes called subclass, or

derived class)

OOP Inheritance

● Ability to reuse code, without duplication
● Can create specialized variants (Teacher,

Student, Advisor, TeachersAssistant, etc)
● Start with a “base class”
● You can “override” base methods
● You can “extend” with new methods
● You can haver layers and layers of derived

classes

OOP Inheritance: Override

class Person:
 def get_access(self):
 return []

class Student(Person):
 def get_access(self):
 return [“Read”]

class Teacher(Student):
 def get_access(self):
 return [“Read”, “Write”]

>>> p = Person()
>>> s = Student()
>>> t = Teacher()
>>> p.get_access()
[]
>>> s.get_access()
[“Read”]
>>> p.get_access()
[“Read”, “Write”]

OOP Inheritance: Extend

class Person:
 def get_access(self):
 return []

class Teacher(Person):
 def __init__(self):
 self.access = []

 def get_access(self):
 return self.access

 def add_access(self, v):
 self.access.append(v)

>>> p = Person()
>>> t = Teacher()
>>> p.get_access()
[]
>>> t.get_access()
[]
>>> t.set_access(“Eat”)
>>> t.get_access()
[“Eat”]

OOP: Multiple Inheritance

● Inheritance from two or more classes
● Not all languages have Multiple Inheritance

● Some have Interfaces instead
– Java, C# have multiple interfaces

● Python allows Multiple Inheritance
● Need to know how Python resolves a method's

definition
● Can be tricky, and prone to errors

OOP Inheritance: MI

class Person:
 def get_access(self):
 return []

class Operator:
 def get_access(self):
 return [“Call”]

class Student(Person, Operator):
 pass

s = Student()
s.get_access()

Sorting: Comparing Run Time

● There are many different algorithms for sorting,
and each can use different amounts of space
and time

● Consider the following:

def sort(list):
 for i in range(len(list) – 1):
 for j in range(i, len(list)):
 if list[i] > list[j]:
 list[i], list[j] = list[j], list[i]

We would like a way to say how much time it
takes.

Big O Notation

● Captures the upper bound of worst case
● Is a dominating function
● Multipliers aren't important
● Examples:

● O(1) – Constant time
● O(n) – Linear time
● O(n ** 2) - quadratic
● O(2 ** n) - exponential

What is the Big O?

def bubble_sort(list):
 for j in range(len(list) - 1, 1, -1):
 swap = False
 for i in range(j):
 if list[i] > list[i + 1]:
 list[i], list[i + 1] = list[i + 1], list[i]
 swap = True
 if not swap:
 break

