
CS206 Lec04

CS206

Software/OO design

ArrayList

1

CS206

Software design: Already discussed

• Good variable names

• Comments

• In Java

• Avoid statics

• Minimize main

• Use inheritance and class design

2

CS206 Lec02

Software Design Goals

• Robustness
▫ software capable of error handling and recovery
▫ programs should never crash

▫ “falling with style” is not crashing

• Adaptability
▫ software able to evolve over time and changing conditions

(without huge rewrites)

• Reusability
▫ same code is usable as component of different systems in

various applications
▫ The story of Mel — https://www.cs.utah.edu/~elb/folklore/mel.html

3

https://www.cs.utah.edu/~elb/folklore/mel.html

CS206 Lec02

OOP Design Principles
• Modularity

• programs should be composed of “modules” each of which do their own
thing

• each module is separately testable

• Large programs are built by assembling modules

• Objects (Classes) are modules

• Abstraction

• Get to the core — non-removable essence of a thing

• Most pencils are yellow, but yellowness does not required

• Encapsulation

• Nothing outside a class should know about how the class works.

• For instance, does the Object class have any instance variables.
(Of what type?)

• Allows programmer to totally change internals without external effect

4

CS206 Lec02

OOP Design

• Responsibilities/Independence: divide
the work into different classes, each
with a different responsibility and are as
independent as possible

• Behaviors: define the behaviors for each
class carefully and precisely, so that the
consequences of each action performed
by a class will be well understood by
other classes that interact with it.

5

CS206 Lec02

Constructors
• Constructors are never inherited

• A class may invoke the constructor of the class it extends via a call to
super with the appropriate parameters

• e.g. super()

• super must be in the first line of constructor

• If no explicit call to super, then an implicit call to the zero-
parameter super will be made

• A class make invoke other constructors of their own class using this()

• this must be first

• Cannot explicitly use both super and this in single
constructor

• One or the other would not be first

• See ArraList (slide 14)

6

CS206

Java Interfaces

• Java allows only single inheritance.
• A class can only extend one class
• As a result, Java does not need any collision

resolution.
• BUT a class can “implement” any number of

Interfaces
• Interfaces only define methods

• they do not provide method bodies so no
collision resolution required.

• Programmer of class that “implements”
interface MUST write method bodies.

7

CS206

Java Interfaces

8

public interface Vehicle {
 void changeGear(int a);
 void speedUp(int a);
 void applyBrakes(int a);
}

In a file
Vehicle.java

Methods defined in interfaces are always public, so
public can be omitted. Clashes with class definition in
which “” indicates package (Horrific inconsistency!)

Interfaces are usually EXTENSIVELY
documented so programers know what is
intended for implementation

CS206 Lec04

Array

• An array is a sequenced collection of
homogenous variables (elements)

• Each element of an array has an index
• The entire array is contiguous in memory

• allocated by new (e.g., new int[10])
• The length of an array is fixed and can

not be changed

9

A
0 1 2 n-1i n

CS206 Lec04

ArrayList

• Dynamically-sized array

• Stores an ordered sequence of objects

• Not sorted, ordered in the sense
that arrays are ordered

• Can grow and shrink when items are
added/removed

• Standard array features all supported,
but with different syntax

10

CS206 Lec04

Interface for ArraList

11

public interface ArraListInterface {
 boolean add(Object t);
 void add(int index, Object t) throws IndexOutOfBoundsException;
 Object get(int index) throws IndexOutOfBoundsException;
 void remove(int index) throws IndexOutOfBoundsException;

 boolean set(int index, Object t) throws IndexOutOfBoundsException;
 int size();
 int indexOf(Object t);
 void clear();
}

show in VSC

CS206 Lec04

ArrayList implementation
• ArrayList is usually implemented with 2 private variables

• an array to hold information

• A variable (call it count) keeps track of the number of elements
in the ArrayList

• Key Operations of Array List
▫ addition

▫ put new item on end and increment count

▫ if not enough space
▫ Create new, bigger array
▫ Copy elements of old array into new one

▫ deletion
▫ shift elements to the left and decrement count
▫ (Optional)If number of elements in AL is much smaller than AL, shrink.

12

CS206

Implementing ArraListInterface

13

public class ArraList implements ArraListInterface {
 private static final int DEF_CAPACITY = 10;
 private static final double GROWTH_RATE = 1.618033; // the golden
mean
 private int count; // number of items currently in ArraList
 private Object[] arra; // the array underlying the ArraList
 public ArraList() {
 this(DEF_CAPACITY);
 }
 public ArraList(int initialCapacity) {
 arra = new Object[capacity];
 }
}

CS206

Size, Clear

14

 /**
 * Returns the number of elements in this list.
 *
 * @return the number of elements in this list.
 */
 int size() {
 return count;
 }

 /**
 * Removes all of the elements from this list.
 * The list will be empty after this
 * call returns.
 */
 void clear() {

 count=0;
 // Enough?????

 }

CS206

Get/Set

15

public Object get(int index) throws IndexOutOfBoundsException {
 if (index > count) {
 throw new IndexOutOfBoundsException("Can only get where
there are already items");
 }
 if (index < 0) {
 throw new IndexOutOfBoundsException("Cannot store to
negative location");
 }
 return arra[index];
 }

CS206

Add to ArraList

16

 /**
 * Add an item to the arraylist
 *
 * @param t the item to be added return true.
 */

 void add(Object t) throws IndexOutOfBoundsException;

Simplest — just put the item into the array and increment the
counter that holds the number of items

What to do is there is no space for another item — need to grow!

CS206 Lec04

Add At Location

• In an operation add(i, o), we make
room for the new element by shifting
forward/to the right the elements A[i],
…, A[n - 1]

17

A
0 1 2 ni

A
0 1 2 ni

A
0 1 2 n

o
i

CS206

Add at a location

18

 /**
 * Add an item to the array list at a particular location. Inserts the specified
 * element at the specified position in this list. Shifts the element currently
 * at that position (if any) and any subsequent elements to the right (adds one
 * to their indices).
 *
 * @param index the location to add the item at
 * @param t the item to be added
 * @return
 * @throws if the index is out of range (index < 0 || index > size())
 */
 boolean add(int index, Object t) throws IndexOutOfBoundsException;

CS206 Lec04

Deletion

• In an operation remove(i), we fill the
hole by shifting backward/to the left the
elements A[i + 1], …, A[n - 1]

19

A
0 1 2 ni

A
0 1 2 n

o
i

A
0 1 2 ni

CS206

Lab

20

Suggestion: start by drawing a good picture of what you want to do
label the picture extensively

Write a method to implement remove for array list

 /**
 * Removes the element at the specified position in this list.
 * Shifts any subsequent elements to the left
 * (subtracts one from their indices).
 *
 * @param index the index of the element to be removed
 */
 void remove(int index) throws IndexOutOfBoundsException;

CS206 Lec03

Generics

• A way to write classes and methods that
can operate on a variety of data types
without being locked into specific types
at the time of definition

• Write definitions & implementations with
“Generic” parameters

• The generics are instantiated (locked
down) when objects are created

21

CS206 Lec03

Generic Methods

22

import java.util.Random;
/***********************
 * @author gTowell
 * Created: August 28, 2019
 * Modified: Jan 24, 2019
 * Purpose:
 * Generic Methods
 ***********************/
public class GenericMethod {
 public static void main(String[] args) {
 Integer[] jj = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }; // NOTE AUTOBOXING!!!
 new GenericMethod().randomize(jj);
 for (int j : jj)
 System.out.println(j);
 String[] ss = { "A", "B", "c", "d", "E", "F" };
 new GenericMethod().randomize(ss);
 for (String s : ss)
 System.out.println(s);
 }

 public <T> void randomize(T[] data) {
 Random r = new Random();
 for (int i = 0; i < data.length; i++) {
 int tgt = r.nextInt(data.length);
 T temp = data[i];

data[i]=data[tgt];
data[tgt]=temp;

 }}}

— generic swap method
— use reflection to check class

CS206 Lec03

Generic Class

23

import java.io.BufferedReader;
import java.io.StringReader;
/**
 * Simple generic class example
 * @author gtowell
 *
 * @param <A>
 */
public class GenericClass<A> {
 /** A non-generic value */
 private double amount;
 /** A generic value */
 private A otherValue;
 /**
 * Constructor.
 * @param other the generic value
 * @param amt a double value.
 */
 public GenericClass(A other, double amt) {
 this.otherValue = other;
 this.amount = amt;
 }
 public static void main(String[] args) {
 GenericClass<String> gString = new GenericClass<String>("ASDF", 24.5);
 System.out.println(gString);
 GenericClass<Double> gDouble = new GenericClass<Double>(99.5, 44.5);
 System.out.println(gDouble);
 GenericClass<BufferedReader> gBR = new GenericClass<BufferedReader>(
 new BufferedReader(new StringReader("When in the course")), 99.8);
 System.out.println(gBR);
 }}

write a toString function
for this class

CS206 Lec02

Generics Restrictions

• No instantiation with primitive types

• Genre<Double> ok, but
Genere<double> is not

• Can not declare static instance variables of a
parameterized type

• Can not create arrays of parameterized types

• but you can create an array of Object
then cast new T[10]
• (T[])new Object[10]

24

CS206

My implementation of ArraList

25

public void remove(int index)
 throws IndexOutOfBoundsException {

}

CS206 Lec04

Creation with Type Parameters

• When constructing an ArraList, you must specify the
type of elements via <>

ArraList<String> l1 = new ArraList<>();

ArraList<Integer> l2 = new ArraList<>()

26

CS206

Example usage

• Write a program to collect then print all
unique words in a file

• Problem: you do not know the number of
distinct words!

• Solution

• allocate a really big array

• Use ArraList!

27

CS206

WordCounter —
Count the unique words in file!

28

WordCounter.java

CS206 Lec04

java.util.ArrayList

• Implements much the same interface as
ours
• Their implementation has a few more

functions
• Theirs is probably more more efficient.
• Part of Java collections framework
• import java.util.ArrayList
• Use ArrayList rather than ArraList (ours)

for Homework 3 and Lab 2.
29

CS206 Lec04

Collections

30

