CS206

Software/O0 design
ArrayList

CS206 1 Lec04

Software design: Already discussed

e Good variable names
o Comments
e In Java
e Avoid statics
e Minimize main
e Use inheritance and class design

CS206 2

Software Design Goals

e Robustness
o software capable of error handling and recovery
o programs should never crash
o “falling with style” is not crashing
e Adaptability

o software able to evolve over time and changing conditions
(without huge rewrites)

e Reusability

o same code is usable as component of different systems in
various applications

o The story of Mel —

CS206 3 Lec02

https://www.cs.utah.edu/~elb/folklore/mel.html

OOP Design Principles

e Modularity

e programs should be composed of "modules” each of which do their own
thing

e each module is separately testable
e Large programs are built by assembling modules
e Objects (Classes) are modules
e Abstraction
e Get to the core — non-removable essence of a thing
e Most pencils are yellow, but yellowness does not required
e Encapsulation
e Nothing outside a class should know about how the class works.

e For instance, does the Object class have any instance variables.
(Of what type?)

e Allows programmer to totally change internals without external effect

CS206 4 Lec02

OOP Design

e Responsibilities/Independence: divide
the work into different classes, each
with a different responsibility and are as
independent as possible

e Behaviors: define the behaviors for each
class carefully and precisely, so that the
consequences of each action performed
by a class will be well understood by
other classes that interact with it.

CS206 5 Lec02

Constructors

e Constructors are never inherited

¢ A class may invoke the constructor of the class it extends via a call to
super With the appropriate parameters

e €.J. super ()
e super must be in the first line of constructor

e If no explicit call to super, then an implicit call to the zero-
parameter super will be made

e A class make invoke other constructors of their own class using this ()
e this must be first

e Cannot explicitly use both super and this in single
constructor

e One or the other would not be first
e See Arralist (slide 14)

CS206 6 Lec02

Java Interfaces

e Java allows only single inheritance.
e A class can only extend one class

e As a result, Java does not need any collision
resolution.

e BUT a class can “implement” any number of
Interfaces

o Interfaces only define methods

e they do not provide method bodies so no
collision resolution required.

e Programmer of class that “implements”
interface MUST write method bodies.

CS206 7

Java Interfaces

In a file Interfaces are usually EXTENSIVELY
Vehicle.java documented so programers know what 1s
intended for implementation
V

public interface Vehicle {
void changeGear(int a);
void speedUp(int a);
void applyBrakes(int a);

Methods defined in interfaces are always public, so
public can be omitted. Clashes with class definition in
which “’ indicates package (Horrific inconsistency!)

CS206 8

Array

e An array is a sequenced collection of
homogenous variables (elements)

e Each element of an array has an index
e The entire array is contiguous in memory
o allocated by new (e.g., new int[10])

e The length of an array is fixed and can
not be changed

AT T T T T T 1111
012] n-ln

CS206 9 Lec04

ArrayList

e Dynamically-sized array
e Stores an ordered sequence of objects

e Not sorted, ordered in the sense
that arrays are ordered

e Can grow and shrink when items are
added/removed

e Standard array features all supported,
but with different syntax

CS206 10 Lec04

Interface for ArralList

public interface ArraListInterface {
boolean add(Object t);
void add(int index, Object t) throws IndexOutOfBoundsException;
Object get(int index) throws IndexOutOfBoundsException;
void remove(int index) throws IndexOutOfBoundsException;
boolean set(int index, Object t) throws IndexOutOfBoundsException;
int size();
int indexOf(Object t);
void clear();

show in VSC
CS206 11 Lec04

ArrayList implementation

e ArrayList is usually implemented with 2 private variables
e an array to hold information

e A variable (call it count) keeps track of the number of elements
in the ArrayList
e Key Operations of Array List
o addition
o put new item on end and increment count
o if not enough space
o Create new, bigger array
o Copy elements of old array into new one
o deletion
o shift elements to the left and decrement count
o (Optional)If number of elements in AL is much smaller than AL, shrink.

CS206 12 Lec04

Implementing ArraListInterface

public class ArraList implements ArralListInterface {

private static final int DEF_CAPACITY = 10,
private static final double GROWTH_RATE = 1.618033;

private int count; // number of items currently in ArralList
private Object[] arra; // the array underlying the ArralList
public ArraList() {

this (DEF_CAPACITY);
I3
public ArraList(int initialCapacity) {

arra = new Object[capacityl];

CS206

13

Size, Clear

/ k%
* Returns the number of elements in this 1list.
%
* @return the number of elements in this 1list.
*/

int size() {

return count;

}

JES S
* Removes all of the elements from this list.
* The list will be empty after this
* call returns.
*/
void clear() {
count=0;

CS206 14

Get/Set

public Object get(int index) throws IndexOutOfBoundsException {
if (index > count) {
throw new IndexOutOfBoundsException('Can only get where
there are already items");
+
if (index < 0) {
throw new IndexOutOfBoundsException('Cannot store to
negative location");
+

return arralindex];

CS206 15

Add to ArralList

/ k%

* Add an item to the arraylist

*

* @param t the item to be added return true.
*/

void add(Object t) throws IndexOutOfBoundsException;

Simplest — just put the item into the array and increment the
counter that holds the number of items

What to do is there is no space for another item — need to grow!

CS206 16

Add At Location

e In an operation add (i, o), we make

room for the new element by shifting
forward/to the right the elements A[i],

., Aln - 1]

ATTTTEFFTT T T 111
01 2] n
TTITT

ATTTITI1] HEEE
01 2] n

AMTTTIT T T 1111
01 2] n

CS206 17 Lec04

Add at a location

/%%

* Add an item to the array list at a particular location. Inserts the specified
*x element at the specified position in this list. Shifts the element currently
*x at that position (if any) and any subsequent elements to the right (adds one
* to their indices).

*

* @param index the location to add the item at

* @param t the item to be added

* @return

* @throws if the index is out of range (index < @ || index > size())

*/

boolean add(int index, Object t) throws IndexOutOfBoundsException;

CS206 18

Deletion

e In an operation remove (i), we fill the

hole by shifting backward/to the left the
elements A[i + 1], .., A[n - 1]

AMTTTIT T T 1111
01 2] n
i SEEEEEN:E S EEEEE
01 2] n
ATTTTEFFTT T T 111
01 2] n

CS206 19 Lec04

Lab

Write a method to implement remove for array list

* Removes the element at the specified position in this list.
* Shifts any subsequent elements to the left

* (subtracts one from their indices).
%
%

@param index the index of the element to be removed
*/
void remove(int index) throws IndexOutOfBoundsException;

Suggestion: start by drawing a good picture of what you want to do
label the picture extensively

CS206 20

Generics

e A way to write classes and methods that
can operate on a variety of data types
without being locked into specific types
at the time of definition

o Write definitions & implementations with
“Generic” parameters

e The generics are instantiated (locked
down) when objects are created

CS206 21 Lec03

Generic Methods

import java.util.Random;

public class GenericMethod {
public static void main(String[] args) {
Integer[] jj=4{1, 2, 3, 4,5, 6, 7,8, 9%
new GenericMethod().randomize(jj);
for (int j : jj)
System.out.printin(j);
String[] ss = { "A", "B", "c", "d", "E", "F" };
new GenericMethod().randomize(ss);
for (String s : ss)
System.out.printin(s);
}

public <T> void randomize(TI[] data) {

Random r = new Random();

for (int i = 0; i < data.length; i++) {
int tgt = r.nextInt(data.length);
T temp = datalil;
datalil=dataltgt];
dataltgt]=temp;

133

— generic swap method

— use reflection to check class

CS206 22

Lec03

Generic Class

import java.io.BufferedReader;
import java.io.StringReader;

write a toString function

public class GenericClass<A> { for this class

private double amount;

private A otherValue;

public GenericClass(A other, double amt) {
this.otherValue = other;
this.amount = amt;

public static void main(String[] args) { _ _
Gener1cC1ass<$tr1n%> String = new GenericClass<String>("ASDF", 24.5);
System.out.println(gS rlng); _
GenericClass<Double> gDouble = new GenericClass<Double>(99.5, 44.5);
System.out.println(gDouble); _
GenericClass<BufferedReader> gBR = new GenericClass<BufferedReader>(
new BufferedReader(new StringReader("When in the course")), 99.8);
1 System.out.println(gBR);

CS206 23 Lec03

Generics Restrictions

e No instantiation with primitive types

e Genre<Double> 0K, but
Genere<double> IS ot

e Can not declare static instance variables of a
parameterized type

e Can not create arrays of parameterized types

e but you can create an array of Object
then cast new T[10]

e (T[])new Object[10]

CS206 24 Lec02

My implementation of ArraList

public void remove(int index)
throws IndexOutOfBoundsException {

CS206 25

Creation with Type Parameters

e When constructing an ArralList, you must specify the
type of elements via <>

Arralist<String> 11 = new ArralList<>();
Arralist<Integer> 12 = new ArralList<>()

CS206 26 Lec04

Example usage

e Write a program to collect then print all
unique words in a file

e Problem: you do not know the number of
distinct words!

e Solution

o allocate a really big array
e Use Arralist!

CS206 27

WordCounter —
Count the unique words in file!

WordCounter.java

CS206 28

java.util.ArrayList

e Implements much the same interface as
ours

e Their implementation has a few more
functions

e Theirs is probably more more efficient.
e Part of Java collections framework
e import java.util.ArrayList

e Use ArrayList rather than ArralList (ours)
for Homework 3 and Lab 2.

CS206 29 Lec04

Collections

Interface

Collections rterable
Abstract Class
y Class
Collection
Set List Queue AbstactCollection
SortedSet AbstactSet Degue AbstractlList AbstractQueue
NavigableSet

AbstractSequentiallist

TreeSet LinkedList ArraylList Vector PriorityQueue

Stack

CS206 30 Lec04

