
Baby Names

CS 151 - Introduction to Data Structures

Assignment 3 - due Friday 2/17

In this assignment, we’ll explore linked lists and more complex custom-designed
classes. The complexity of this assignment increases significantly from the previous
two. You are given two weeks because I think you need it. Start EARLY!

1 Input File Format

We’ll be taking input from files containing lines in the following format:

rank,male-name,male-number,female-name,female-number

where the comma-separated fields have the following meanings:

rank the ranking of the names in this file
male-name a male name of this rank
male-number number of males with this name
female-name a female name of this rank
female-number number of females with this name

This is the format of database files obtained from the U.S. Social Secutiry Ad-
ministration of the top 1000 registered baby names. Each line begins with a rank,
followed by the male name at that rank, followed by the number of males with
that name, etc. Here is an example showing data from the year 2002:

1,Jacob,30568,Emily,24463

2,Michael,28246,Madison,21773

3,Joshua,25986,Hannah,18819

4,Matthew,25151,Emma,16538

5,Ethan,22108,Alexis,15636

6,Andrew,22017,Ashley,15342

7,Joseph,21891,Abigail,15297

8,Christopher,21681,Sarah,14758

1



9,Nicholas,21389,Samantha,14662

10,Daniel,21315,Olivia,14630

...

996,Ean,157,Johana,221

997,Jovanni,157,Juana,221

998,Alton,156,Juanita,221

999,Gerard,156,Katerina,221

1000,Keandre,156,Amiya,220

As you can see from the above, in 2002, there were 30,568 male babies named
Jacob and 24,463 female babies named Emily, making them the most popular
names used in that year. Similarly, going down the list, we see that there were 220
newborn females named Amiya, making it the 1000th most popular female baby
name.
The entire data set contains a file for each year from 1990 to 2017, named
names1990.csv, ... , names2017.csv respectively.

2 Specific Tasks

You will be building two linked lists to store the baby names found in all files, one
for the male names and one for the female names. You should program the linked
list data structure from scratch and you are not allowed to use Java’s built-in
LinkedList. The two linked lists should be kept in alphabetically sorted order by
name.
Specifically, the program needs to be able to look up a name and report the
following statistics:

1. Linked list rank - just an integer indicating the position of the name in your
linked list so that we can verify your list is sorted alphabetically.

2. For each year

(a) rank - the rank of the name that year (for that gender)

(b) number - the number of babies given that name that year (for that
gender)

(c) percentage - the percentage of babies given that name that year (for
that gender)

3. Total

(a) rank - the rank of the name among all years (for that gender)

2



(b) number - the number of babies given that name among all years (for
that gender)

(c) percentage - the percentage of babies given that name among all years
(for that gender)

For example, for the name “Mary” (female), the following statistics should be
printed for all 28 files:

1424

1990

Mary: 35, 8666, 0.005432

1991

Mary: 38, 8760, 0.005596

...

2017

Mary: 126, 2381, 0.001877

Total

Mary: 51, 142630, 0.003630

Note that not all names appear in all years. The popularity of names vary greatly
from generation to generation. If a name doesn’t appear in a particular data file,
you should skip printing that particular year all together.

3 Look-up via Command-line Arguments

Your program should now take command-line arguments to input zero or more
files names to process.
Add flags -m name and -f name, which indicate a male name or a female name to
look up, respectively. For example:
java Main -f Dianna names1990.csv names2000.csv

will print out the rank, number and percentages (as explained in Section 2) of the
female name Dianna used in 1990, 2000 as well as the combined statistics of these
two years, as shown below.

3



398

1990

Dianna: 594, 384, 0.000241

2000

Dianna: 847, 262, 0.000182

Total

Dianna: 675, 646, 0.000213

More than one name may be searched, each with the appropriate preceeding -f or
-m. For example, java Main -f Dianna -m Adam names1990.csv names2000.csv,
or java Main -f Dianna -f Aline names1990.csv names2000.csv are both valid
inputs.
You may assume that the list of filenames is always last, i.e. the first non-flag
argument you encounter is assumed to be the beginning of the list of file names.
Make sure you error-check your arguments thoroughly, i.e. illegal/badly-formated
options, non-existent options, etc. Remember the order of flags should not matter.
Your program should behave rationally no matter how unreasonable the input or
the value of flags. Simply reporting error and quitting are completely acceptable
for bad input. Throwing uncaught exceptions or giving errorneous output are not.
Try at the Linux commandline to see examples of flag and error handling - just
experiment with say ls and flags.
Remember that the wildcard * expansion will let you specify multiple file names
that fit a certain pattern easily, for example:

java Main -f Dianna names200*

will be automatically expanded to:

java Main -f Dianna names2000.csv names2001.csv names2002.csv

names2003.csv names2004.csv names2005.csv names2006.csv names2007.csv

names2008.csv names2009.csv

by the shell for you. Using this feature to test will reduce tedious typing.

4 Design Notes

You should design a Name class that stores all the relevant stats for a particular
name. Although generic linked lists have many advantages, your code will be

4



simplified with non-generic linked lists that are locked to the Name class. This is
acceptable. If however, you choose to implement generic linked lists from scratch
instead, you will be awarded extra credit. Make sure you state this clearly in your
README so that the TAs are aware.
Computing the yearly percentages, as well as total number and total percentage
require additional auxiliary data structures besides the linked lists. Consider what
you need and decide where and how to store the information carefully.
Calculating total rank is non-trivial. Think through your data structure and al-
gorithm needs before you start. You should write the program so that it makes
the best use of available storage. Resist the urge to store redundant information
in many different places.
Suggested steps below. Note that for each step, you should test with one input file,
then multiple input files (Just print partial contents of your linked lists), before
moving onto the next one. You can hardcode the filenames in the early steps. This
will get fixed once you have step 3 and beyond working.

1. Read the files into two lists of unique names in sorted order. (Your Name class
needs to have only a String, for now) If you are having trouble debugging
the sorted order, I suggest creating a smaller input-file (by keeping only the
first 10 or 20 names) and using that instead.

2. Expand your Name class to provide storage for yearly number and rank.
Modify your file-reading code to create and insert (in sorted order) a new
Name object if it’s not already in the list, or update it with the given yearly
stats if it is.

3. Enable single name lookup on a single file (via commandline arguments)

4. Enable single name lookup on multiple (or all) files

5. Compute all the necessary totals to enable yearly percentage reporting and
storing them in reasonable data structures.

6. Compute additional totals to enable total number and total percentage re-
porting

7. Design an algorithm to compute total rank

8. Enable multiple name lookup on multiple files

5 Testing

1. Start by testing manually. Select a few names and input files combinations
to spot check.

5



2. Then compare your output with the two samples you see in this handout.
The output for Mary isn’t shown for every year, but if the three numbers for
the grand totals match, then you are probably in safe hands.

3. For a bigger sanity check, look in the usual tests/a3 in my handouts. Mul-
tiple expected output files are provided for you there, as well as a bash shell
script to automate testing. Start by reading the README in the subdirec-
tory and follow instructions there.

6 Write-up

Please include a write-up in your README that explains your class design and
algorithms. In particular, address the following questions:

1. Which instance variables do you have in your Name class?

2. How do you keep the linked lists in alphabetically sorted order?

3. How do you organize the storage of the yearly statistics per name versus the
totals?

4. Where are the overall totals stored and where are the yearly totals stored?

5. How is total rank computed?

6. If you implemented with generic linked lists, please mention it!

7 Electronic Submissions

1. README: The usual plain text file README

Your name:

How to compile: Leave empty if it’s just javac Main.java

How to run it: Leave empty if it’s just java Main

Known Bugs and Limitations: List any known bugs, deficiencies, or lim-
itations with respect to the project specifications. Documented bugs
will receive less deduction versus uncaught ones.

Write-up: Contents as discussed above

2. Source files: all .java files

3. Data files used: the entire names data file folder

6



DO NOT INCLUDE: Please delete all executable bytecode (.class) files prior
to submission.

To submit, store everything (README, source files and data files) in a directory
called A3. Then follow the directions here:
https://cs.brynmawr.edu/systems/submit_assignments.html

7


