
Array and Classes - Zipcode lookup

CS 151 - Introduction to Data Structures

Assignment 1 - due Friday 1/27

In this project, we will practice file input, class design and arrays. Note that all
programming assignments will go through auto-testing for correctness and thus it
is important that you pay attention to naming conventions. In other words, name
your classes, methods and directories EXACTLY as given here, including cases.

All programming assignments in this class will follow the convention of nam-
ing the class that contains the main method Main. Thus the corresponding file
should be named Main.java. For now, you can keep all of your other classes
in the same Main.java file. Because Java allows only one public class per file,
it is okay to leave out the access modifier for all your classes - i.e. instead of
public class Place just write class Place. This will change in subsequent as-
signments and more instructions will be given then.

In addition, please read the program design principles and code formatting

standards carefully. You are expected to adhere to all stated standards. Viola-
tions will result in deductions.

1 Input File Format

All data files are found in ~dxu/handouts/cs151/data. Look under the appro-
priate subdirectory. For example, for this assignment (#1), look under a1.

The file uszipcodes.csv contains all zipcodes used in the United States. Here
are the details of the data file’s format:

The first line is a special line, giving some basic info about the file, in the following
comma-separated values:

<num>,zip,city,state,population,males,females,

1

http://cs.brynmawr.edu/cs151/design.pdf
http://cs.brynmawr.edu/cs151/style.pdf
http://cs.brynmawr.edu/cs151/style.pdf

where the first field in the line is an integer giving you the number of zip codes
stored in the file. The rest of the line contains column headers for the file. You
will ignore the rest of this line in this assignment.

The rest of the lines come in the following format:

<zip>,<town name>,<state code>,<population>,<males>,<females>,

where the comma-separated fields have the following meanings:

zip the 5-digit zipcode
town name name of the town with the zipcode
state code 2-character encoding of the state name
population population in this zipcode, an integer
males number of males in this zipcode, an integer
females number of females in this zipcode, an integer

Sample snippet:

42613,zip,city,state,population,males,females,

00501,Holtsville,NY,,,,

00544,Holtsville,NY,,,,

00601,Adjuntas,PR,18570,9078,9492,

00602,Aguada,PR,41520,20396,21124,

00603,Aguadilla,PR,54689,26597,28092,

...

As you can see from the above, there are 42,613 entries following the first line. Zip-
code 00501 belongs to the town of Holtsville, NY, for which we have no population
recorded.
In this assignment, you will ignore the population numbers, and store only the zip
code, the town and the state. Note however that there are towns whose names
have more than one word, such as “Palm Springs”.

2 Specific Tasks

1. Create a class called Place to model each zipcode to contain the following
data fields: zipcode, town, state. In order to support data encapsulation,
these fields should be labeled private. You will thus need a constructor and
several accessor methods in the Place class to set up the fields and to access
them.

2

2. Make sure to include a constructor in your Place class according to this
signature:

/** Creates a Place with the given zip, town name, and

* state

* @param zip The 5-digit zip code

* @param town The town name

* @param state The state abbreviation

*/

public Place(String zip, String town, String state)

3. Override toString of the Place class so that System.out.print(ln) will
generate the expected output (see 5) when called on an object of Place type.

4. Write a separate class LookupZip that will contain several public static meth-
ods to implement the main part of the assignment with the following signa-
tures:

/** Parses one line of input by creating a Place that

* denotes the information in the given line

* @param lineNumber The line number of this line

* @param line One line from the zipcodes file

* @return A Place that contains the relevant information

* (zip code, town, state) from that line

*/

public static Place parseLine(int lineNumber, String line)

/** Reads a zipcodes file, parsing every line

* @param filename The name of the zipcodes file

* @return The array of Places representing all the

* data in the file.

*/

public static Place[] readZipCodes(String filename)

throws FileNotFoundException

/** Find a Place with a given zip code

* @param zip The zip code (as a String) to look up

* @return A place that matches the given zip code,

* or null if no such place exists.

*/

public static Place lookupZip(Place[] places, String zip)

3

Implement the class LookupZip and the above methods.

5. Write a main method that ties it all together in a class called Main. Your
program should continuously prompt the user for a zipcode untill the user
enters 00000 to quit.

Here’s a sample session:

zipcode: 19010

Bryn Mawr, PA

zipcode: 99400

No such zipcode

zipcode: 91729

Rancho Cucamonga, CA

zipcode: 00000

Good Bye!

3 Testing

A reminder that your program will undergo auto-testing, thus it is important that
you stick to the output format EXACTLY. That means exactly the same amount
of white spaces, exactly the same punctuations and exactly the same error message.
Below are a few tips on how to check for correctness yourself:

1. A smaller input file (of the same format as uszipcodes.csv), named testZip.csv,
is provided for you as well, in case you want to debug on a smaller dataset.

2. Check your output (manually) against the sample output given in 2.5 above.

3. Test some more zipcodes of your choice (your hometown, some other place
you know, or just select a few random lines from the data file).

4. In the subfolder tests/a1, there are two files in.txt and out.txt, provided
for your testing purposes. in.txt contains 17 test inputs and out.txt con-
tains the expected output if you ran your program with in.txt. Of course,
you are not expected to type each input into your program by hand. You
should use the command-line redirection feature of the Linux shell, which
re-directs terminal I/O to files, like this:
java Main < in.txt > my-out.txt

4

< specifies replacing terminal input with the named file
> specifies placing terminal output into the named file

The Linux command diff can be used to compare two files for differences.
If your program works correctly, diff my-out.txt out.txt should return
nothing.

4 Electronic Submissions

Your submission will be handed in using the submit script provided on our Linux
system. Note that your program will be graded based on how it runs on the depart-
ment’s Linux server, not how it runs on your PC, thus it is highly recommended
that you ssh into the server and test even if you choose to program on your own
laptop.
At this point, you probably only have one source file Main.java. The submission
should then include the following items:

1. README: There must be a plain text file called README, which contains any
helpful information on how to compile and run your program. This includes:

Your name:

How to compile: for now should just be javac Main.java

How to run it: for now should just be java Main

Known Bugs and Limitations: List any known bugs, deficiencies, or lim-
itations with respect to the project specifications. Documented bugs
will receive less deduction versus uncaught ones.

2. Source files: Main.java

3. Data files used: uszipcodes.csv

DO NOT INCLUDE: Please delete all executable bytecode (.class) files prior
to submission.

To submit, store everything (README, source files and data files) in a directory
called A1. Then follow the directions here:
https://cs.brynmawr.edu/systems/submit_assignments.html

5

	Input File Format
	Specific Tasks
	Testing
	Electronic Submissions

