
CS151 Midterm 1

Name:

Start Time:

Finish Time: 

Accommodation (if applicable):

I have abided by the Honor Code. I have not discussed this test with anyone.

(Sign below)

If	you	take	this	test	on	separate	sheets	of	paper,	put	all	of	the	items	above	
on	your	first	page.	If	you	need	more	space,	feel	free	to	add	extra	pages.		
Just	make	sure	everything	is	well	labelled.	

There	are	5	questions	in	this	test.	All	questions	have	
equal	point	values.	They	may	not	be	of	equal	difficulty.	
As	indicated	in	the	table	below	some	questions	have	
several	parts.		Be	sure	to	answer	all	parts	of	all	
questions.	

Question parts points

1 1 (or 4) 20

2 2 20

3 (3 or 7 depending on how you
count)

20

4 2 20

5 2 20

Possible Points: 100

Page of 1 11

Question 1 (20 points — each of the 4 functions is 5 points). Write a class
that implements the interface documented below.You may assume that SepChainHT and
List151Impl are exactly as discussed and as they appear in these URLS: https://
cs.brynmawr.edu/cs151/L05/List151Impl.java.txt, https://cs.brynmawr.edu/cs151/L08/
SepChainHT.java.txt Also you may assume that their implementations are in the directory in
which you are writing your class. No documentation is expected.

public interface SignOfFour {
 /**
 * return the number 4
 * @return the number 4;
 */
 public int number();
 /**
 * Add 4 to the provided number
 * @param num the number to which 4 is to be added
 * @return the provided number + four
 */
 public int add(int num)

 /**
 * Returns an instance of a Separate Chaining hashtable containing
 * pairs of items in which the key and value are identical.
 * If the count is a less than or equal to zero then an empty
 * hashtable should be returned.
 * If greater then zero, then the contents of the hashtable
 * should be multiples of 4. For instance, given 3, then the
 * returned hashtable will contain the following pairs:
 * <4,4>, <8,8>, <12,12>
 * @param count the number of multiples of 4 to put into
 * the hashtable
 * @return a hashtable, with contents as described above
 */
 public SepChainHT<Integer, Integer> makeHT(int count);

 /**
 * Return an instance of a List151Impl containing powers of 4.
 * If the count is less than or equal to zero, return null.
 * If positive, return the powers of 4 (starting at 1).
 * For instance, if the provided count is 5, then the
 * returned list should contain: 1, 4, 16, 64, 256, 1024.
 * Ignore the problem of numeric rollover.
 * @param count the highest power of 4 to be returned
 * @return a List151Impl (or null) as described above.
 */
 public List151Impl<Integer> makeList151(int count);
}

Page of 2 11

https://cs.brynmawr.edu/cs151/L05/List151Impl.java.txt
https://cs.brynmawr.edu/cs151/L05/List151Impl.java.txt
https://cs.brynmawr.edu/cs151/L08/SepChainHT.java.txt
https://cs.brynmawr.edu/cs151/L08/SepChainHT.java.txt

public class SignFour implements SignOfFour {

 @Override
 public int number() {
 return 4;
 }

 @Override
 public int add(int num) {
 return 4+num;
 }

 @Override
 public SepChainHT<Integer, Integer> makeHT(int count) {
 if (count <= 0) {
 return new SepChainHT<>();
 } else {
 SepChainHT<Integer, Integer> ret = new SepChainHT<>();
 for (int i = 0; i < count; i++) {
 ret.put(i, i);
 }
 return ret;
 }
 }

 @Override
 public List151Impl<Integer> makeList151(int count) {
 List151Impl<Integer> ret = new List151Impl<>();
 int mul = 1;
 for (int i = 0; i <= count; i++) {
 ret.add(mul);
 mul *= 4;
 }
 return ret;
 }

}

Page of 3 11

Question 2 (20 points) :
Part 1 (19 points): Implement the class and method as documented below

You are given a complete implementation of the StuffBag class which is identical to https://
cs.brynmawr.edu/cs151/L03/StuffBag.java.txt except that the instance variable stuffArray is
defined to be protected rather than private. You have been asked to create a new class, named
StuffBagEx, that extends StuffBag. StuffBagEx has a single new method that is documented
below. Write the StuffBagEx class. (If you cannot figure out how to do the reversing, just do
the move into a List151Impl (max of 14 points)). Hint, get everything into the List151Impl, then
do the reversing thing.)

(List151Impl is as in https://cs.brynmawr.edu/cs151/L05/List151Impl.java.txt).

 /**
 * Return an instance of List151Impl that contains everything
 * in the current bag, twice — in a spacial pattern.
 * Suppose that the
 * StuffBag contains A, B and C. Then the List151Impl with contain
 * A, B and C in some order, followed by those items in exactly
 * the reverse of the order in which they first appear.
 * eg, A,C,B,B,C,A
 * @return an instance of List151Impl containing everything
 * that was in the bag, twice as described above.
 */
 public List151Impl<R> toListI151ImplTwo()

public class StuffBagEx<R> extends StuffBag<R> {
 public List151Impl<R> toListI151ImplTwo() {
 List151Impl<R> ret = new List151Impl<>();
 for (int i=0; i<stuffArray.length; i++) {
 if (stuffArray[i] != null) {
 ret.add(stuffArray[i]);
 }
 }
 for (int i = ret.size() - 1; i >= 0; i--) {
 ret.add(ret.get(i));
 }
 return ret;
 }
}

Page of 4 11

https://cs.brynmawr.edu/cs151/L03/StuffBag.java.txt
https://cs.brynmawr.edu/cs151/L03/StuffBag.java.txt
https://cs.brynmawr.edu/cs151/L05/List151Impl.java.txt

Question 2, part 2 (1 point): What is the time complexity of your new method. This is for your
method, irregardless of its correctness. Briefly (at most 2 sentences) explain your answer.

O(n). The first loop is actually not dependent on the number of items in the bag, so it is O(1). The second loop touches each item
in the bag exactly once, so it is O(n). Two independent loops O(n) and O1) —> O(1)+O(n)==O(n) 

Page of 5 11

Question 3 (20 points): Algorithmic Complexity.

PART 1: (2 points) Place the following complexity descriptors in order based on their expected
asymptotic run-time (ie, when n gets really large).

O(n)

O(lg n)

O(n*n)

O(1)

O(n * lg n)

O(1), O(lg n), O(n), O(n * lg n), O(n*n)

PART 2: (consists of 5 parts — 3 points each): For each of the methods of the Complx class on
the next page, give its algorithmic complexity.

Fill in the table below with the algorithmic complexity of the methods in the Complx class

PART 3: (3 points) Write a method, named sumF, to be put in the Complx class. sumF should
have O(n3) runtime

public void sumF() {

	 int sm=0

	 for (int i=0; i<arrA.length; i++) {

	 	 for (int j=0; j<arrA.length; j++) {

	 	 	 for (int k=0; k<arrA.length; k++) {

	 	 	 	 sm = sm + i+j+k;

}}}

System.out.println(sm);

}	  

Method Complexity

sumA O(n)

sumB O(1) typo in question. Answer intended was O(lg
n) so that as accepted also

sumC O(1)

sumD O(N*N)

sumE O(lg n)

Page of 6 11

public class Complx {
 int[] arrA;
 public Complx(int[] inp) {
 arrA = inp;
 }
 public int sumA() {
 int summ=0;
 for (int i = 0; i < arrA.length; i = i+1) {
 summ += arrA[i];
 }
 return summ;
 }
 public int sumB() {
 int summ = 0;
 double cc = arrA.length;
 while (true) {
 if (cc >= 1)
 break;
 summ += arrA[(int)cc];
 cc = cc/1.001;
 }
 return summ;
 }
 public int sumC() {
 int summ=0;
 for (int i = 0; i < arrA.length; i = i + 1) {
 if (i > 5) {
 return arrA[i];
 }
 }
 return summ;
 }
 public int sumD() {
 int summ = 0;
 for (int i = 0; i < arrA.length/10; i++) {
 summ += sumA();
 }
 return summ;
 }
 public int sumE() {
 int summ = 0;
 for (int i = 0; i < 40000000; i++) {
 for (int j = 1; j < arrA.length; j = j * 2) {
 if (i <= j) {
 summ += arrA[i] + arrA[j];
 }
 }
 }
 return summ;
 }
}

Page of 7 11

Question 4: (20 points) Create a class called Vehicle that holds at least 3 pieces of
information about cars or trucks (eg, number of wheels, kind of engine). Then create a class
that inherits from Vehicle called Car. Car should have at least one new piece of information
beyond that in Vehicle. For each of Car and Vehicle, write: a constuctor, toString method and
equals method. The constructor should initialize all instance variables to values given in
parameters to the construtor. The toString should show the values of all instance variables. The
return from equals should be based on some or all of the instance variables in the class.

Your Car class should use inheritance appropriately from Vehicle.

Extra Credit: (up to 4 points) For each class, write a main method that illustrates the use of
the constructor, toString and equals that you just wrote. The illustration should be just that, an
illustration, not an exhaustive test.

public class Vehicle {
 private int wheels;
 private String maker;
 private String engineType;

 public Vehicle(int w, String m, String e) {
 this.wheels = w;
 this.maker = m;
 this.engineType = e;
 }

 public String toString() {
 return "Maker:" + maker + " Engine:" + engineType + "
Wheels:" + wheels;
 }

 public boolean equals(Object ob) {
 if (ob instanceof Vehicle) {
 Vehicle v = (Vehicle) ob;
 return this.wheels == v.wheels;
 }
 return false;
 }
}

Page of 8 11

public class Car extends Vehicle {
 String color;

 public Car(int w, String m, String e, String c) {
 super(w, m, e);
 this.color = c;
 }

 public String toString() {
 return super.toString() + "Color: " + color;
 }

 public boolean equals(Object ob) {
 if (ob instanceof Car) {
 Car v = (Car) ob;
 return this.color.equals(v.color);
 }
 return false;
 }
}

Page of 9 11

Question 5 (20 points): Consider a probing hashtable. Keys are strings with length 2.
All keys are composed only of the letters a, b, c. All values are a single letter. The key strings
are converted into an integers using a variation of Horner’s method as follows.

• 	 Letters have the following integer values. a=1, b=3, c=5. (We are not using the ASCII

value of the letters).

• 	 The key is converted to an integer from beginning to end using 7 as the prime multiplier.

So the calculation of the hash value for the key “ac”, given a backing array of size 8, would be:

	 result = a + c*7

 result = 1 + 5*7	

 result = 1 + 35 = 36

Finally do the standard modulus thing to get into the range for the hashtable.

	 hashValue = 36 % 8 = 4

Part 1 (12 points): Show the contents of the hash table after these 6 additions when using the
hashing function described above, and a hashtable of size 8. Use quadratic probing. Be sure to
legibly show your work to be able to receive partial credit.

Add <“ab”, a>

Add <“aa”, b>

Add <“bb”, c>

Add <“cc”, d>

Add <“cb”, e>

Add <“ab”, f>

Add <“ba”, g>

calculation of hash hash value mod 8 mod 10

ab 1+3*7 22 6 2

aa 1+7 8 0 8

bb 3+3*7 24 0 4

cc 5+5*7 40 0 0

cb 5+3*7 26 2 6

ab REPEAT ———

ba 3+1*7 10 2 0

0 1 2 3 4 5 6 7 8 9

ht=8 <aa,b> <bb,c> <cb,e> <ba,g> <cc,d> <ab,f> XXXX XXXX

ht=10 <cc,d> <ba,g> <ab,f> <bb,c> <cb,e> <aa,b>

Page of 10 11

Question 5 PART 2 (8 points): The hash table has gotten too full. Rehash into a new table of
size 10.

Page of 11 11

