Trees

mostly chapter 26
A tree is an abstract model of a hierarchical structure. Nodes have a parent-child relation. No loops. One Path.
Terminology
Same as for heaps

- **root**: no parent –
 - There is only one root
- **external node/leaf**: no children –
- **internal node**: node with at least one child -
- **ancestor/descendent**
- **depth**: # of ancestors
- **height**: max depth

- **Subtree**: tree consisting of a node and its descendants
Binary Tree

- An tree with every node having at most two children – left and right
Binary Tree Properties

- Let n denote the number of nodes and h the height of a binary tree
 - $h + 1 \leq n \leq 2^{h+1} - 1$
 - $\log(n + 1) - 1 \leq h \leq n - 1$
- Height of a binary tree is usually (you hope) $\sim O(n \log(n))$ of the max number of nodes
 - worst case ??
Type of Binary Trees

- A binary tree is **complete** if every level (except possibly the last) is filled
 - A complete binary tree has height $= \log_2(n)$
- Heaps are always complete!
public interface TreeInterface {
 int size();
 int height();
 boolean isEmpty();
 boolean contains(B element);
 void insert(B element);
 B remove(B element);
}
public class LinkedBinaryTree<E extends Comparable<E>> implements TreeInterface<E> {

 protected Node ...

 protected int size;
 protected Node<E> root;
protected class Node<F extends Comparable<F>> {
 F payload;
 Node<F> right;
 Node<F> left;

 public Node(F e) {
 payload = e;
 right = null;
 left = null;
 }

 public String toString() {
 return payload.toString();
 }
}

This looks a lot like a doubly linked list!!

So, is a doubly linked list a tree?
Binary Search Trees

- smaller to the left, bigger to the right

Always follow this pattern for insertion ... why?
size() without size

- Size (number of nodes) of tree is
 - size of right subtree plus
 - size of left subtree plus
 - 1

```java
public int size() {
    return sizeAltUtil(root);
}

private int sizeAltUtil(Node<E> treepart) {
    if (treepart == null)
        return 0;

    return sizeAltUtil(treepart.right) +
           sizeAltUtil(treepart.left) +
           1;
}
```

Its recursive!!!
Height / maxDepth

Again, using a recursive helper method

```java
@override
public int height()
{
    return maxDepthUtil(root, 0);
}

int maxDepthUtil(Node n, int depth) {
...
```
contains

- returns true if found in the tree, false otherwise
- Assumes / requires Binary search tree
Contains Algorithm

• compare with root of current subtree
 □ root is empty – return false
 □ root == element – return true
 □ root < element – recurse on right child
 □ root > element - recurse on left child

□ Comparisons are assumed to be done using Comparable interface (ie, the compareTo method)
 □ <E extends Comparable<E>>
Pseudo Code

findRec(node, toBeFound):
 if node == null:
 return false
 if node.payload == toBeFound:
 return true
 if node.payload > toBeFound:
 return findRec(node.left, toBeFound)
 else
 return findRec(node.right, toBeFound)
Contains Code

• Write using a recursive helper method

```java
public boolean contains(E element) {
    if (root == null) return false;
    return containsUtil(root, element) != null;
}

private Node containsUtil(Node node, E toBeFound) {
    ...
}
```
Unordered Contains

• Suppose that you did not know relation among children (you do NOT have a binary search tree)
 • So thing being looked for could be either left or right
 • How would you change containsUtil function
 • Would a tree be a useful structure in this case?
insert

- `void insert(E element);`
- `new node is always inserted as a leaf`
- `inserts to`
 - left subtree if element is smaller than subtree root
 - right subtree if larger
- Pre-case: if `root>null` then `root=new Node`
- Handling Duplicates: Several possibilities: “Just say No”, add in right subtree, do something in Node

```java
public void insert(E element) {
    if (root==null) {
        root=new Node<E>(element);
        size = 1;
    } else
        insertUtil(root, element);
}
```
Groups

• Draw binary search trees for data received from left to right:
 • 4, 5, 6, 49, 43, 31, 19, 10, 11, 8, 17
 • 17, 31, 8, 19, 43, 11, 5, 49, 10, 6, 4

• Write insertUtil

```java
private void insertUtil(Node treepart, E toBeAdded) {
    ... }
```
Traversals / Printing
Postorder traversal

```java
public void printPostOrder() {
    iPrintPostOrder(root, 0);
    System.out.println();
}

private void iPrintPostOrder(Node treePart, int depth) {
    if (treePart == null) return;
    iPrintPostOrder(treePart.left, depth+1);
    iPrintPostOrder(treePart.right, depth+1);
    System.out.print("["+treePart.payload+","+depth+"]");
}
```
Remove

• `boolean remove(E element);`

• returns true if element existed and was removed and false otherwise

• Cases
 □ element not in tree
 □ element is a leaf
 □ element has one child
 □ element has two children
Leaf

• Just delete

```
<table>
<thead>
<tr>
<th>8</th>
<th>12</th>
<th>18</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
```
One child

- Replace with child – skip over like in linked list
Two Children

• Replace with in-order predecessor or in-order successor

• in-order predecessor
 □ rightmost child in left subtree
 □ max-value child in left subtree

• in-order successor
 □ leftmost child in right subtree
 □ min-value child in right subtree
Replace with Predecessor
Replace with Successor
Practice

• Given the data:
 6, 19, 10, 5, 43, 31, 11, 8, 4, 17, 49, 36

• Draw the binary tree
• Write the preorder traversal of your tree
• Write the postorder traversal of your tree
• What the height of the tree?
• If the data were re-arranged, what is the shortest possible tree?