
Priority Queues
cs151

Priority Queue

• A queue that maintains order of elements according to
some priority

• Contrast to Queue which is FiFo

• PriorityQueue can implement a stack or a queue

• PriorityQueues are about the order in which things
are removed, NOT the way in which they are stored.

• the items may or may not be sorted, or otherwise
arranged.

• Aside: This statement applies to stack and queues also,
it is just convenient in those cases to arrange data to
make retrieval easy

2

Complexity Analysis
Unordered Ordered

offer O(1) O(n)

peek O(n) O(1)

poll O(n) O(1)

Add N items, then
Remove N items

Add:O(n)

Remove: O(n*n)

Overall:O(n*n)

Add:O(n*n)

Remove: O(n)

Overall: O(n*n)

Binary Heap

• A heap is a “binary tree” storing keys at
its nodes and satisfying:

▫ heap-order: for every internal node other

than root,

▫ Heap is filled from top down and within a

level from left to right.

◆at depth , the leaf nodes are in the leftmost

positions

◆last node of a heap is the rightmost node of max

depth

𝑣
𝑘𝑒𝑦(𝑣) ≥ 𝑘𝑒𝑦(𝑝𝑎𝑟𝑒𝑛𝑡(𝑣))

h

4

Binary Tree — terms

5

Term Definition

Node A part of a tree. 2,5,7,9,7,1

Parent A node that has children 2,5,6

Child A node that has parents. Child nodes have exactly one parent

Binary Tree A structure of nodes such that parent nodes have at at most two
children

Root The node in a tree that has no parent.

Leaf Any node that has no children

Height The maximum distance from a the root node to a leaf.

Subtree The part of a tree whose root is a given node

2

65

79 1z

Height of a Heap

• A binary heap storing n keys has a
height of O(log2n)

• This is NOT true for general binary trees

6

1

2

2h−1

1

keys
0

1

h−1

h

depth

Insertion into a Heap

• Insert as new last node

• Need to restore heap order

7

2

65

79

insertion node

z

2

65

79 1z

Lec16

Upheap

• Restore heap order

▫ swap upwards

▫ stop when finding a  

smaller parent

▫ or reach root

• 𝑂(𝑙𝑜𝑔𝑛)

8

2

65

79 1z

2

15

79 6z

1

25

79 6z

Poll

• Removing the root of the heap

▫ Replace root with last node

▫ Remove last node

▫ Restore heap order

9

2

65

79

last node

w

7

65

9
w

new last node

Downheap

• Restore heap order

▫ swap downwards

▫ swap with smaller child

▫ stop when finding  

larger children

▫ or reach a leaf

• 𝑂(𝑙𝑜𝑔𝑛)

10

7

65

9
w

5

67

9
w

Heaps are built on Arrays

• Parent from child

• suppose child is at location childLoc in array

• parentLoc = (childLoc-1)/2

• Child from Parent

• suppose parent is at parentLoc in array

• leftChild = parentLoc*2+1

• rightChild = parentLoc*2+2

0 1 2 3 4 5 6 7

2 5 6 9 7 1

• Parent from child

• child at loc 4 (value 7)

• parent is at (4-1)/2 = 1 (value 5)

• Child from Parent

• parent at loc 2 (value 6)

• leftChild =2*2+1 = 5 (value 1)

• rightChild = 2*2+2 = 6 (value — not used)

Locations of Parents and children are in strict mathematical relationship

Add to Heap here

2

65

79 1z

Priority Queue using Heaps
startup

public class PriorityQHeap<K extends Comparable<K>, V> extends AbstractPriorityQueue<K, V>

{

 private static final int CAPACITY = 1032;

 private Pair<K,V>[] backArray;

 private int size;

 public PriorityQHeap() {

 this(CAPACITY);

 }

 public PriorityQHeap(int capacity) {

 size=0;

 backArray = new Pair[capacity];

 }

 @Override

 public int size()

 {

 return size;

 }

 @Override

 public boolean isEmpty()

 {

 return size==0;

 }

Heap Insertion
Priority Queue offer method

public boolean offer(K key, V value)

1. Ensure there is room — if not return false

2. Add new items to end of heap (low and left viewed graphically)

first unoccupied viewed array-wise

3. Repeat

1. If at root, STOP

2. Compare with parent

3. If greater, swap the GoTo 3.1

4. stop (less -- or equal -- so do not need to keep going up)

4. return true

Peek and Poll

 @Override

 public V poll() {

 if (isEmpty())

 return null;

 Entry<K,V> tmp = backArray[0];

 removeTop();

 return tmp.theV;

 }

 @Override

 public V peek() {

 if (isEmpty())

 return null;

 return backArray[0].theV;

 }

Remove Top
In English

Remove head item from Heap
 private void removeTop()

 {

 backArray[0] = backArray[size-1];

 backArray[size-1]=null;

 size--;

 int upp=0;

 while (true)

 {

 int dwn;

 int dwn1 = upp*2+1;

 if (dwn1>size) break;

 int dwn2 = upp*2+2;

 if (dwn2>size) { dwn=dwn1;

 } else {

 int cmp = backArray[dwn1].compareTo(backArray[dwn2]);

 if (cmp<=0) dwn=dwn1;

 else dwn=dwn2;

 }

 if (0 > backArray[dwn].compareTo(backArray[upp]))

 {

 Pair<K,V> tmp = backArray[dwn];

 backArray[dwn] = backArray[upp];

 backArray[upp] = tmp;

 upp=dwn; }

 else { break; } } }

General Removal

• swap with last node

• delete last node

• may need to upheap or downheap

17

Heap Insertion
Priority Queue offer method

public boolean offer(K key, V value)

 {

 if (size>=(backArray.length-1))

 return false;

 // put new item in at end data items

 int loc = size++;

 backArray[loc] = new Pair<K,V>(key, value);

 // up heap

 int upp = (loc-1)/2; //the location of the parent

 while (loc!=0) {

 if (0 > backArray[loc].compareTo(backArray[upp])) {

 // swap and climb

 Pair<K,V> tmp = backArray[upp];

 backArray[upp] = backArray[loc];

 backArray[loc] = tmp;

 loc = upp;

 upp = (loc-1)/2;

 }

 else

 {

 break;

 }

 }

 return true;

 }

Complexity Analysis

Unordered Ordered Heap Based

offer O(1) O(n) O(lg n)

peek O(n) O(1) O(1)

poll O(n) O(1) O(lg n)

Add N items, then
Remove N items

Add:O(n)

Remove: O(n*n)

Overall:O(n*n)

Add:O(n*n)

Remove: O(n)

Overall: O(n*n)

Add:O(n * lg n)

Remove: O(n * lg n)

Overall: (n * lg n)

Sorting
Offer N followed by Poll N is sorting!!!!

• PQ on unordered == Selection Sort

• PQ on ordered == Insertion Sort

• PQ on Heap == Heap Sort

CS151 Lec16

Selection Sort
• Selection-sort:

▫ in place algorithm given an array with N items:

▫ step 1: find the min from 0..(N-1) in array and swap with item in
position 0

▫ step 2: find min from 1..(N-1) in array and swap with item in
position 1.

▫ etc

• priority queue implemented with an unsorted array / arrayList / …

• Time:

• O(n2)

• In terms of priority Q, can split this into two phases

• insertion == O(N)

• polling == O(N2)

21

CS151

Selection Sort — Example

22

Phase 1 Inserting Inserting

a 7 (7) 1

b 4 [7,4] 1

…

g [7,4,8,2,5,3,9]

Phase 2 Polling

a [2] [7,4,8,5,3,9] search=4, shift=3

b [2,3] [7,4,8,5,9] search=5, shift=1

c [2,3,4] [7,8,5,9] search=2 shift=3

d [2,3,4,5] [7,8,9] search=3, shift=1

e [2,3,4,5,7] [8,9] search=1, shift=2

f [2,3,4,5,7,8] [9] search=1, shift=1

g [2,3,4,5,7,8,9] [] search=1

CS151 Lec16

Insertion Sort
• Insertion-sort

• in-place algorithm

▫ public Comparable[] sort(Comprable[] arra)

• Step 0: start with item in position 0. Now the items in positions 0..0 are sorted

• Step 1: look at item in position 1. Compare it to item in 0. If p1 is smaller, then swap.

the items in position 0..1 are sorted with respect to each other

• Step 2: determine where item in p2 should go in sorted list 0..N. If needed, For instance,

bigger than 0 but smaller than 1. Make a space: save p1 into tmp. Shifting p1 into p2.
Then put tmp into p1. Now the item in 0..2 are sorted.

• Step N:

• Priority queue implemented with a sorted array/ ArrayList / …

• Time:

• O(n2)

• In terms of PQ

• Add:O(n2)

• Remove: O(n)

• Generally faster than selection sort

23

CS151 Lec16

Example

24

	

Phase 1	 — Inserting

 (a)	 	 7	 	 (7)	

	 (b)	 	 4	 	 (4,7)	

	 (c)	 	 8	 	 (4,7,8)	

	 (d)	 	 2	 	 (2,4,7,8)	

	 (e)	 	 5	 	 (2,4,5,7,8)	

	 (f)	 	 3	 	 (2,3,4,5,7,8)	

	 (g)	 	 9	 	 (2,3,4,5,7,8,9)	

Phase 2 — polling	

	 (a)	 	 (2)	 	 	 (3,4,5,7,8,9)	

	 (b)	 	 (2,3)	 	 	 (4,5,7,8,9)	

		

	 (g)	 	 (2,3,4,5,7,8,9)	 	 ()

CS151

Heap Sort

• Heap-sort:

▫ Insertion — no more than log2(n) steps per insertion

▫ Deletion — no more than log2(n) steps per deletion

• priority queue is most commonly implemented with a
heap

• Time:

• Add:O(n * log2(n)) — doable in O(n).

• Remove: O(n * log2(n))

• Note: with a lot of work can do this without an additional array.

25

CS151

Example

26

	 	 	 	

Phase 1	 — Inserting

 (a)	 	 7	 	 (7)	

	 (b)	 	 4	 	 (4,7)	

	 (c)	 	 8	 	 (4,7,8)	

	 (d)	 	 2	 	 (2,4,8,7)	

	 (e)	 	 5	 	 (2,4,8,7,5)	

	 (f)	 	 3	 	 (2,4,3,7,5,8)	

	 (g)	 	 9	 	 (2,4,3,7,5,8,9)	

Phase 2 — polling	

	 (a)	 	 (2)	 	 	 (3,4,7,5,8,9)	

	 (b)	 	 (2,3)	 	 	 (4,5,7,9,8)	

		

	 (g)	 	 (2,3,4,5,7,8,9)	 	 ()

Timing
size selection Insertion Insertion

(improved)
Heap

1000 16 15 11 2
2000 8 12 26 3
4000 24 23 20 5
8000 96 95 81 10

16000 370 378 315 17
32000 1585 1359 1218 36
64000 5771 5590 4605 77

128000 23087 21547 19849 161
256000 345
512000 1128

1024000 1973
2048000 3225
4096000 7577
8192000 18586

10000==1 second

anything below 1000  
is very noisy

