
CS151

Queues

More with Comparable

Priority Queues

1

CS151 2

Agner Krarup Erlang

Queueing Theory

CS151 3

Queues

CS151

Queue Interface

• null is returned
from getFront()
and dequeue()
when queue is empty

• return false from
offer when cannot
add to queue.

4

public interface QueueInterface<E> {
 int size();
 boolean isEmpty();
 E getFront(); // peek
 boolean enqueue(E e);
 E dequeue();
 void clear();
}

CS151

Example

5

Operation output Queue
Contents

enqueue(5) TRUE {5}
enqueue(3) TRUE {5, 3}

dequeue() 5 {3}

enqueue(7) TRUE {3, 7}

dequeue() 3 {7}

getFront() 7 {7}

dequeue() 7 {}

dequeue() null {}

CS151

Array-based Queue
• An array of size n in a circular fashion
▫ frontLoc: index of the front element

▫ where objects are read

▫ count: number of stored elements

▫ rearLoc: index of rear element

▫ where objects are added

6

Q
0 1 2 rf

normal configuration

Q
0 1 2 fr

wrapped-around configuration

CS151

Circular Array and Queue

7

Q
0 1 2 rf

normal configuration

Q
0 1 2 fr

wrapped-around configuration

CS151

Performance and Limitations
for array-based Queue

• Performance
▫ let be the number of objects in the queue
▫ The space used is
▫ Each operation runs in time

• Limitations
▫ Max size is limited and can not be changed
▫ Adding to a full queue returns false

(enqueue method)

𝑛
𝑂(𝑛)

𝑂(1)

8

CS151

Start of Queue Implementation

9

public class ArrayQueue<Q> implements QueueInterface<Q> {
 private static final int DEFAULT_CAPACITY = 42;
 private Q[] backingArray;
 private int count;
 private int frontLoc;

 public ArrayQueue() {
 this(DEFAULT_CAPACITY);

 public ArrayQueue(int qSize) {
 count = 0;
 frontLoc = 0;
 backingArray = (Q[]) new Object[qSize];
 }
 public int size() {
 return count;
 }

CS151

Java Documentation
Queue offer Method (enqueue)

10

boolean offer(E e)
Inserts the specified element into this queue if it is possible to do
so immediately without violating capacity restrictions. When
using a capacity-restricted queue, this method is generally
preferable to add(E), which can fail to insert an element only
by throwing an exception.
Parameters:
e - the element to add
Returns:
true if the element was added to this queue, else false

enqueue

https://docs.oracle.com/javase/7/docs/api/java/util/Queue.html
https://docs.oracle.com/javase/7/docs/api/java/util/Queue.html#add(E)

CS151

Write enqueue and dequeue

11

public class ArrayQueue<Q> implements QueueInterface<Q> {
 private static final int CAPACITY = 42;
 private Q[] backingArray;
 private int count;
 private int frontLoc;

 boolean enqueue(Q e); // add item to queue // write with class
 Q dequeue(); // remove item from queue // write in groups

CS151 12

CS151

SortedArrayList

• Problem
• how to guarantee that the Generic class C has an ordering …

• Homework 4 convert to string and compare those strings
• That method is less than optimal Why?

• It would be better to require that items have an ordering
• or at least that items know ordering with respect to each

other.

• In Java — require the Comparable interface

13

public class Sal<C> {

public class Sal<C extends Comparable<C>> {

CS151

Comparable Interface

• Part of Java language

• Idea, give a way for classes to define a
total ordering of instances

• Java classes that implement:

• String

• All descendants of Number

• Lots of others

14

CS151

The Comparable Interface

15

• public interface Comparable<T>  
This interface imposes a total ordering on the objects of each class that implements it. This ordering is referred to
as the class's natural ordering, and the class's compareTo method is referred to as its natural comparison
method.Lists (and arrays) of objects that implement this interface can be sorted automatically
by Collections.sort (and Arrays.sort). Objects that implement this interface can be used as keys in
a sorted map or as elements in a sorted set, without the need to specify a comparator.
The natural ordering for a class C is said to be consistent with equals if and only if e1.compareTo(e2) == 0 has
the same boolean value as e1.equals(e2) for every e1 and e2 of class C. Note that null is not an instance of
any class, and e.compareTo(null) should throw a NullPointerException even
though e.equals(null) returns false.
It is strongly recommended (though not required) that natural orderings be consistent with equals. This is so
because sorted sets (and sorted maps) without explicit comparators behave "strangely" when they are used with
elements (or keys) whose natural ordering is inconsistent with equals. In particular, such a sorted set (or sorted
map) violates the general contract for set (or map), which is defined in terms of the equals method.
For example, if one adds two keys a and b such that (!a.equals(b) && a.compareTo(b) == 0) to a sorted
set that does not use an explicit comparator, the second add operation returns false (and the size of the sorted set
does not increase) because a and b are equivalent from the sorted set's perspective.
Virtually all Java core classes that implement Comparable have natural orderings that are consistent with equals.
One exception is java.math.BigDecimal, whose natural ordering equates BigDecimal objects with equal
values and different precisions (such as 4.0 and 4.00).
For the mathematically inclined, the relation that defines the natural ordering on a given class C is:
 {(x, y) such that x.compareTo(y) <= 0}.

•  
The quotient for this total order is: {(x, y) such that x.compareTo(y) == 0}.

https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html#sort-java.util.List-
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#sort-java.lang.Object:A-
https://docs.oracle.com/javase/8/docs/api/java/util/SortedMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/SortedSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

CS151

Comparable interface
(shortened)

16

int compareTo(T o)
Compares this object with the specified object for order. Returns a negative integer, zero, or a positive integer as this object is less
than, equal to, or greater than the specified object.
The implementor must ensure sgn(x.compareTo(y)) == -sgn(y.compareTo(x)) for all x and y. (This implies

that x.compareTo(y) must throw an exception iff y.compareTo(x) throws an exception.)

The implementor must also ensure that the relation is transitive: (x.compareTo(y)>0 &&
y.compareTo(z)>0) implies x.compareTo(z)>0.

Finally, the implementor must ensure that x.compareTo(y)==0 implies that sgn(x.compareTo(z)) ==
sgn(y.compareTo(z)), for all z.

It is strongly recommended, but not strictly required that (x.compareTo(y)==0) == (x.equals(y)). Generally speaking, any
class that implements the Comparable interface and violates this condition should clearly indicate this fact. The recommended
language is "Note: this class has a natural ordering that is inconsistent with equals."

In the foregoing description, the notation sgn(expression) designates the mathematical signum function, which is defined to return
one of -1, 0, or 1 according to whether the value of expression is negative, zero or positive.

Parameters:
o - the object to be compared.
Returns:
a negative integer, zero, or a positive integer as this object is less than, equal to, or greater
than the specified object.

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

CS151

Comparable Interface
(even shorter)

17

public interface Comparable<T> {
 int compareTo(T o);
}

• return 0 if they are equal

• return <0 if caller is less than compared

• return >0 if caller greater than compared

• Integer v3 = Integer.valueOf(3).

• v3.compareTo(4) ==> -1

• "DQ".compareTo("DR") ==> 3

CS151

Comparable Rabbit

18

public class Rabbit implements Comparable<Rabbit> {
 private final int iD;
 private final String nickname;
 public Rabbit(int id, String nn) {
 this.iD = id;
 this.nickname = nn==null ? makeName() : nn;
 }

// implement Comparable interface so that rabbits
// are sorted based on their iD.

CS151

Priority Queue

19

• Rather than FiFo, remove items according to
their priority
• Implement:

• same methods as queue(?)
• Others needed?

public class PriorityQueue<B extends Comparable>
 extends ArrayList
 implements QueueInterface

public class PriorityQueueSAL<P extends Comparable<P>>
 extends SALextending<P>
 implements QueueInterface<P>

CS151

PriorityQueue

• Implementation a trivial extension on
SAL!!!

• Small difference

• Usually PQ are on K,V pairs where

• K — the priority

• V — the item in the queue

• Q: Does K,V pair matter?

20

