
cs151

Hash Tables
Open Addressing

cs151

HashTables
• A hash table is a form of a map that has better time

complexity

• A hash table consists of

• an array of size
▫ an associated hash function that maps keys to integers in [0, N-1]
▫ A “collision” handling scheme

• Hash Function

• is such a function for integers

• item is stored at index

• Collision Handling

• A “collision” occurs when two different keys hash to the
same value

𝑁
h

h(𝑥) = 𝑥%𝑁
(𝑘, 𝑣) h(𝑘)

2

cs151

Separate Chaining

• Idea: each spot in hashtable holds a
map of key value pairs when the key
maps to that hashvalue.

• Replace the item if the key is the same
• Otherwise, add to map
• Generally do not want more than about

number of objects as size of table
• Chains can get long

3

cs151

Open Addressing
Probing

• Store only <K,V> at each location in array
• No awkward lists

• If key is different and location is in use
then go to a different location in array

• What different location?
• Repeat until free location found

• If you stored <K,V> in different location,
how do you find it?

4

cs151

Probe distance

• When location is in use need a formulaic
way to find a new location
• Linear Probing
• Simple but has problems

• Quadratic Probing
• Not as simple, fewer problems

• Double Hashing
• Requires two hash functions, best

5

cs151

Linear Probing

• Compute hash location for Key
• Let loc=h(key), q=0

• q a.k.a probeCount
• Repeat:
• if (loc+q)%N unoccupied, put in Pair ..

Done
• if key is same, replace value .. Done
• q++; // Next spot

6

cs151

Linear Probing Practice

• Put the following data into a hashtable using
linear probing
• Hashtable size = 17
• h(x) = x % 17

• What is the worst case for number of probes?

7

<4,A> <13,B> <39,C> <32,D>

<21,E> <40,G> <31,H> <30, J>

<14,K> <3,L> <48,M> <20,N>

cs151

Linear ==> Quadratic

• Linear probing suffers from "Primary
clustering"
• the bigger the cluster gets, the faster it

grows
• So idea, rather than place=(loc+q) make

place=loc+q*q
• Logic -- take bigger and bigger hops to

escape from primary cluster
• "Quadratic probing"

8

cs151

Quadratic Probing

• Compute hash location for key

• let loc=h(key), q=0
• Repeat:

• if (loc+q*q) unoccupied, put in Pair ..
Done

• if key is same, replace value .. Done
• q++

9

cs151

Quadratic Probing Example
• Suppose

• hashtable size is 7
• h(t)=t%7
• add:

• <3,A>
• <10,B>
• <17,C>
• <24,Z>
• <3,D>
• <4,E>

10

cs151

Quadratic ==> Double Hashing

• Clustering still happens, just not as bad

• "secondary clustering"

• because every entry uses the same jumping sequence

• So need to get different jump sequences.

• define a new hashing function h2 that gives the jump sequence for a
key

• Suppose two keys k1, and k2 such that h1(k1)=h1(k2)

• Then probably h2(k1)!=h2(k2) so the jump sequences are different

• Hence, avoid primary and secondary clustering

11

cs151

Double Hash Probing

• Define a second hashing function h2(key)
• h2 is in range P...Q

• P > 0, usually P > 1, but 1 is OK
• Q > P, usually Q < N, Q>N ok, just annoying

• Let q=0; loc=h1(key); inc=h2(key)
• Repeat:

• if loc+q*inc unoccupied, put in Pair .. Done

• if key is same, replace value .. Done
• q++

12

cs151

Double Hash Practice
• Put the following data into a hashtable using double hash

probing
• Hashtable size = 17
• h(x) = x % 17
• h2(x) = (x%20)+2

• What is the worst case for number of probes?

13

<4,A> <13,B> <39,C> <32,D>

<21,E> <40,G> <31,H> <30, J>

<14,K> <3,L> <48,M> <20,N>

cs151

Probing Distance (Summary)
• Given a hash value , linear probing generates

• Primary clustering – the bigger the cluster gets, the faster it grows

• Quadratic probing –
• Quadratic probing leads to secondary clustering, more subtle, not as dramatic,

but still systematic
• Double hashing

• has neither primary nor secondary clustering
• But you need two hashing functions

• each hash takes some time
• if using Horner's, then for second function just change the multiplier and

change the modulus (and add one)
• hash function in Java

h(𝑥) h(𝑥), h(𝑥) + 1, h(𝑥) + 2, …

h(𝑥), h(𝑥) + 1, h(𝑥) + 4, h(𝑥) + 9, …

14

cs151 Lec19

Performance Analysis for probing
• In the worst case, searches, insertions and removals

take time
▫ when all the keys collide

• The load factor affects the performance of a hash
table
▫ expected number of probes for an insertion with open

addressing is

• Expected time of all operations is provided is
not close to 1
• NOTE: cheating here O() is about true worst case

𝑂(𝑛)

𝛼

1
1 − 𝛼

𝑂(1) 𝛼

15

cs151

Removing Items

• In separate chaining just remove.
• Probing: cannot simply delete as

positions are dependent on what was
there are time inserted

• So rather than set position empty on
delete, replace item with "tombstone"

16

cs151

Probing vs Chaining

• Probing is significantly faster in practice
• Why? locality of references
• much faster to access a series of

elements in an array than to follow
the same number of pointers in a list

• Efficient probing requires tombstoning
• de-tombstoning??
• like defragmenting a hard disk

17

