Q13

It makes sense to store heaps in an array because a heap is built and maintained so that it is
always a complete tree. Hence, if there are 10 items in the heap, then array locations 1-10 are
used in the array . By comparison, a general binary tree could have a lot of empty space. For
example, consider a “tree” with 10 items in which only the right link is ever used. Then the 10
items would be stored at positions: 0, 2, 6, 14, 30, 62, 126, 254, 510, 1022. Hence, you would
need an array with size 1023 just to be sure to be able to store a tree of height 10 that actually
has only 10 items. Clearly this wastes a lot of space, and the space wastage only gets worse
with increasing depth. So, it you know the max height of a tree, or are not worried about
limiting the height, it may make sense to use an array to store a general binary tree. Otherwise,
not.

Q14 Very little change is really required from the standard remove function. | could have
simplified things a little by rather than using the code to get the inorder successor, | write code
to get a leaf. In this case, | could then immediately delete the found left, return its payload and
not have to do more recursion. But, by not making this change, | saved some code writing.

public boolean removeUnordered(E element) {
if (root == null)
return false;
return removeunorderedUtil(root, null, element);

@param treepart
@param parent
@param toBeRemoved
@return

private boolean removeUnorderedUtil(Node<E> treepart, Node<E>
parent, E toBeRemoved) {
if (treepart == null)
return false;
int cmp = treepart.payload.compareTo(toBeRemoved);
if (cmp!'=0) {
boolean b = removeUnorderedUtil(treepart.left, treepart,
toBeRemoved) ;

if (b) {
return true;
} else {

return removeUnorderedUtil(treepart.right, treepart,
toBeRemoved) ;

}
} else {

by

Ql17:

public int countFullNodes() {
return countFullNodesUtil(root);

¥

private int countFullNodesUtil(Node<E> node) {
if (node == null)
return 0;
int incr = (node.right != null && node.left != null) ? 1 : 0;
return incr + countFullNodesUtil(node.left) +
countFullNodesUtil(node.right);
¥

Q21

Consider building a BST with the items 1,2,3,4,5 in that order. This results in a tree with the
root at 1 and only right links used until you get to 5. On the other hand, if you receive the same
number in the order 5,4,3,2,1 then you would have a root at 5 and only left links used until you
getto 1. So BSTs are certainly order dependent

Balancing eliminates some but not all order dependence. For instance, given the numbers
1,2,3 it does not matter the order in which they were received. Balancing will always result in a
tree with a root at 2 with 1 to the left and 3 to the right. However, given just 1,2 the order does
matter. In one case the tree has a root of 2 and 1 to the left; in the other case the root is at 1
with 2 to the right.

08 » java.lang.String is final and cannot be extended. Hence, this question could be
considered a “trick” question, or just poorly thought out. Lets assume poorly thought out. So,
rather than

public class StringFrequencyOrder extends String

lets just make a class with a method
public int freqOrder(String s1, String s2)

which returns the order of these two strings using the method described in the question.
public class FString {
HashMap<Character, Integer> lookup;
final charl[] corder = { 'e', 't', 'a', 'o', 'i', 'n', 's', 'h',
r.l’ Idl’ I'LI’ ICI’ Iul’ Iml’ IWI’ I.I:I' Igl 1
Ipl’ Ibl’ IVI' le' Ijl' le' 1

O -
-
N‘
-
-

public FString() {
lookup = new HashMap<>();
for (int i = @; i < corder.length; i++)
lookup.put(corder[il, 1i);

by

int freqOrder(String s1, String s2) {
int 11 = sl.length();

int 12 = s2.length();
int luse = (11 > 12) ? 12 : 11;
for (int i = 0; 1 < luse; i++) {
int c1 = lookup.get(sl.charAt(i));
int c2 lookup.get(s2.charAt(i));
if (cl < c2)
return -1;
if (c1 > c2)
return 1;

A

by

if (11 < 12)
return -1;
if (11 > 12)
return 1;
return 0;
b
// Bonus — some tests of the correctness of the implemenation
public static void main(Stringl[] args) {
FString ff = new FString();
System.out.println(ff.freqOrder("e", "e"));
System.out.println(ff.freqOrder("e", "a"));
System.out.println(ff.freqOrder("efghi", "efght"));

Q8a. Yes and No. In terms of asymptotic analysis, using a O(n) procedure to build the heap
does not matter because the time to remove items from the heap remains O(log n). Hence the
overall complexity of sorting is O(n) + O(n*log n) = O(n + n * log n). That is the complexity
remains O(n*log n). On the other hand, the change will affect the observed runtime of the
algorithm. (It will speed the algorithm). So, it does matter in a practical sense .. speedup is
good. In a theoretical sense you have not changed the core behavior of the algorithm.

Q5.

Note a nice main function illustrating that the 2 queue system works as a stack. This code used
the class java.util.LinkedList for its queue implementation and java.util.Queue for the queue
interface. | could have used classed discussed in class instead. It was simply more
convenient to use these java standards.

In terms of algorithmic analysis, the push is clearly O(1), there is only one statement. Actually,
that one statement could hide anything, but in this case it is safe to assume thatthe one
statement hides O(1) implementation of offer. The pop method is O(n) again assuming an O(1)
implementation of queue poll. There are two loops over the entire contents of the queue, each
of which therefore takes O(n) time. But the two loops do not interact. So we have O(n)
+0(n)=0(n+n)=0(n)

import java.util.LinkedList;
import java.util.Queue;

public class SQueue<E> {

}

Q4:

Queue<E> queueA;
Queue<E> queueB;

public SQueue() {

}

queueA = new LinkedList<E>();
queueB new LinkedList<E>();

public void push(E e) {

}

queueA.offer(e);

public E pop() {

}

if (queueA.size() == 0)
return null;

if (queueA.size() == 1) {
return queueA.poll();

}

for (int 1 = 0; i < queueA.size() - 0; i++)
queueB.offer(queueA.poll());

E tmp = queueA.poll();

while (!queueB.isEmpty())
queueA.offer(queueB.poll());

return tmp;

public static void main(String[] args) {

SQueue<String> sgqs = new SQueue<>();
sqgs.push("AA");

sqs.push("BB");

sqgs.push("CC");
System.out.println(sqgs.pop());
System.out.println(sqgs.pop());
sqs.push("DD");
sqs.push("EE");
System.out.println
System.out.println
System.out.println
System.out.println

sqs.pop());
sqs.pop());
sqs.pop());
sqs.pop());

—~ o~ o~ o~

The worst case running time is O(n). This will tend to occur when C==n-1. That is when the
number of items in the hashtable is equal to 1 less that the size of the hashtable. For linear
probing this situation will definitely result in an average run time of n/2 with a min of 0 and a
max of n. Quadratic probing is harder to analyze but should be similar (in fact, quadratic
probing from a given starting position using the standard implementation will only ever see
about half of the possible positions, so it this case the time might be undefined. With some
minor modifications (not discussed in class) quadratic probing will see all locations in about 3n

probes. So the time to put in that last item is between 1 and 3n which is O(n). (Note that this
answer goes a lot deeper than | would expect, indeed than | thought when | wrote the
question. Simply arguing that the time would be O(n) is enough.)

Q: It is far more common to use a linked list as the data structure
underlying a stack than it is to use an array. Why? C(Cite specific
instances that make a linked list the preferred structure for stacks.
The problem with arrays for stacks is that they are inherently size limited. Hence, when building a stack
on top of an array you have to include code for handling the “stack full” problem. If you use a linked list,
then there is no fixed size at which the stack is full. In some sense the stack can be as large as the number
of linked list items that will fit int he memory of the computer. (Thus, you do not necessarily need any
code for handling the no space left problem.) Realistically, you probably want to limit the stack
somewhat as using up all of the emory of the computer is probably a bad idea. Also as an aside, you
would definitely want to use a doubly linked list to implement a stack (otherwise one or the other of pop
and push would be really annoying. Finally, for a stack, you might not even need a head pointer, but yo
would definitely need a tail pointer for your linked list.

Q: Consider you answer to the previous question. Does the logic you
applied to Linked lists and stacks also apply to Queues? Explain.

Yes, the logic also applies to queues. All of the discussion of memory applies directly. For a queue, you
would definitely want both a head and tail pointer, but a singly linked list would be sufficient.

Problem 1:

public int countChildren() {
return countChildrenUtil(root);
}
private int countChildrenUtil(Q1Node<S> n) {
if (n==null) return 0;
int cc = 1;
QINode<S> clist = n.firstChild;
while (clist!=null) {
cc += countChildrenUtil(clist);
clist = clist.next;
}
return cc;

¥

Question 5:
I understand that this question want to know the maximum number of
links between the root and a node that has two children.

/* This will return -1 if there are not nodes in the
* tree with two children.

*/

public int distFullNodes() {

return distFullNodesUtil(root, 0);
+

private int distFullNodesUtil(Node<E> node, int d) {
if (node == null)
return -1;
int incr = (node.right != null && node.left != null) ? d : -1;
int 1l = distFullWNodesUtil(node.left, d + 1);
int 1r = distFullWNodesUtil(node.right, d + 1);

if (11 > 0) {
if (11 >= 1r)
return 11;
}
if (lr > 0) {
if (lr >= 1)
return 1r;
}

return incr;

public static void main(String[] args) {
LinkedBinaryTree<Integer> tr = new LinkedBinaryTree<>();
int[] dt = { 10, 5, 2, 7, 1, 12, 50, 11, 3, 6, 8, 100, 60,
200, 160, 300 };
for (int ii : dt)
tr.insert(ii);
System.out.println(tr.distFullNodes());

