
Q13. You can use an array to store a binary tree in exactly the way that this is done for heaps.
(Root at position 0, left child of root and 1, right child of root at 2, etc). Generally, the only time
this is actually used is for heaps. Why?

Q14. You are given code that implements all but the remove function for an UNORDERED
binary tree. Write a remove function for this style of tree. You can assume the other functions
in TreeInterface have all been implemented correctly and are available for your use.

Q17. Write the function “int countFullNodes()” which returns the number of nodes in the binary
tree that have 2 children.

q21. Binary search trees are order dependent in the sense that
the structure of the tree (ie, its shape and the values stored
in nodes at a particular location) is dependent on precise order
in which items are added to and deleted from the tree. Give an
example of order dependence of BSTs. Are AVL (the balancing
system discussed in class) BSTs also order dependent? Support
your yes or no answer with examples

Q8: Suppose I wanted to replace the standard string sorting algorithm (as implemented by
compareTo) with an algorithm where the value of a letter is based on the frequency of letter
use. So, for instance, e is the most common so it sorts first, then t, then a, …

Here is the complete order of letter frequency (for English)

	 e,t,a,o,i,n,s,h,r,d,l,c,u,m,w,f,g,y,p,b,v,x,j,x,q,z

Write a class with the following definition:

public class StringFrequencyOrder extends String

Note that String implements the Comprable interface, so all you actually have to do is to
override the compareTo method. You may use any data structure to store the letter frequency
information. If you cannot write such a class, at least write a compareTo function (that is
consistent with the Comparable interface). You may assume that this class (or your compareTo
method) only deals with lower case letters. (Note also that you cannot actually write this legally
in Java because the String class is final.)

Q8a. The usual procedure for building a heap is O(n * log n). There is a faster procedure that is
O(n); provided that you have all the data to be added to the heap prior beginning the heaps
construction. Is is worth this faster heap building method when you are using heapsort?
Explain.

Q5. You can use a pair of queues (call them A and B) to implement a Stack as follows:

Stack push: just do an offer onto queue A.

Stack pop: poll every item off of queue A onto queue B except the last item.

 With the last put it in a temporary variable tempV

 swap queueA and queueB

 return tempV

public StackQ {

	 Queue queueA;

	 Queue queueB;

	 public StackQ() {

	 	 queueA = new Queue();

	 	 queueB = new Queue();

	 }

}

Given this start of an implementation of QStack, write offer and poll methods. In the code you
write you may NOT have any more uses of “new Queue()”

What is the big-O running time of each of your methods.

Q: It is far more common to use a linked list as the data structure underlying a stack than it is
to use an array. Why? Cite specific instances that make a linked list the preferred structure for
stacks.

Q: Consider you answer to the previous question. Does the logic you applied to Linked lists
and stacks also apply to Queues? Explain.

Q4. Suppose you have a hashtable using Quadratic probing. What is the worst case running
time to insert a key/value into such a hashtable. You should assume that the capacity of the
hashtable is C and that it currently contains n items. Explain your answer.

Question 5:

public class LinkedBinaryTree<E extends Comparable<E>> {
 protected class Node
 {
 E payload;
 Node right;
 Node left;
 public Node(E e)
 {
 payload=e;
 right=null;
 left=null;
 }
 public String toString()
 {
 return payload.toString();
 }
 /** The root of the tree */
 protected Node root;

 // Other stuff as needed

 }

Given the tree and Node definition above, write a method returns the depth of the lowest node
that has 2 children.

