Final Comments and Review
Dijsktra’s shortest path

```java
private class Node<H> {
// Node content
public H payload;
// hold the list
public ArrayList<Edge<G>> edges;
// best known path to the node
public ArrayList<Node<H>> path;
// true if there is a path
public boolean visited;
// cost to traverse the path
double cost = 0;
}

public void shortestWeightedPathFrom(G fr) {
    cleanPaths();
    PriorityQHeap<Double, Node<G>> pq = new PriorityQHeap<>() {
        Node<G> ng = nodeHash.get(fr);
        ng.visited = true;
        ng.path = new ArrayList<>();
        ng.cost = 0;
        pq.offer(0d, ng);
    };
    while (!pq.isEmpty()) {
        Node<G> curr = pq.poll();
        for (Edge<G> linked : curr.edges) {
            Node<G> ln = linked.too;
            if ((curr.cost + linked.weight) < ln.cost) {
                ln.doVisit(curr, curr.cost + linked.weight);
                pq.offer(ln.cost, ln);
            }
        }
    }
}
```
Finding Groups

- Suppose undirected links
- Question: Identify groups
 - A group is all the nodes in a graph that can be reached from each other

```java
ArrayList<ArrayList<T>> allGroups() {
  change visited from boolean to integer
  mark all nodes as unvisited (==0)
  set group = 1
  while exists unvisited nodes
    a <- an unvisited node
    run dijkstra shortest path from node a
    marking nodes as visited in group
    group <- group + 1
  Collect and return groups
```
Data Structures

- Array
- ArrayList
 - it grows and shrinks
- Maps / Hashtables
 - going beyond numeric indexes
- Stacks and Queues
- Linked Lists
- Trees
- Graphs
Programming techniques and concepts

- Object oriented programming
 - inheritance, generics, ...
- Searching
- Sorting
- Recursion
- Analysis
Course Goals

1. Become a better computer scientist
2. Learn about common data structures
 1. Implementation
 2. How and when to use each
3. Understand Object Oriented program design and its implementation in Java
4. Develop an understanding of UNIX
5. Become a better Java programmer
Final

• Strong emphasis on final 1/3 of course
• Questions may involve material from first 2/3
• You will have 3 hours + 20 minutes from the time you download to the time you submit.
• Open book, open notes, open computer, open web.
• Instructions are largely unchanged from midterms.
• No discussion with anyone.