
cs151

Graphs

1

cs151

Graphs

• Consist of nodes and
edges

• edges may be

• weighted or
unweighted

• Directed or
undirected

• No distinguished
starting location

• Loops allowed
2

A

DC

B

A graph with 4 nodes

and unweighted,

directed edges

cs151

Adjacency Lists
• Each node holds

list of edges
leaving the node

• Add an ArrayList

of edges to the
node definition

• Edge need only
store destination

• How do you store
bi-directional links?

3

 private class Node<H> {

 // Node content

 public H payload;

 // hold the list

 public ArrayList<Edge<G>> edges;

 public Node(H payl) {

 this.payload = payl;

 this.edges = new ArrayList<Edge<G>>();

 }

 public void addEdge(Node<G> n, double w) {

 edges.add(new Edge<G>(n, w));

 }

cs151

Graph Navigation

• Can I get from
Node X to Node
Z?

• Adj List
representation?

4

X

Z

Y

cs151

Path Exists

5

boolean pathExists(Starting, ending)

 Stack s <- new Stack

 add staring point to stack

 while stack not empty

 n <- pop stack

 if n is destination

 return true

With each edge from n

add end to stack

return false

• Problem: loops

• How to handle?

• A “depth first” traversal

cs151

Shortest unweighted path

• Change path exists to from stack to
Queue

• need to store paths

6

cs151

Shortest Weighted Path

• Edsger W. Dijkstra

• “Dijsktra’s shortest path

algorithm” (1956)

• non-negative weights

• A “greedy” algorithm

• Do the best thing you
can based on local
info and hope you
get a global best.

7

1930-2002

PhD in CS (1959)

Pioneered structured programing

Seminal work in distributed computing

Curmudgeon

cs151

Finding Groups

• Suppose undirected links

• Question: Identify groups

• A group is all the nodes in a graph
that can be reached each other

• How does this problem change when
you have directed links?

8

