Linked Lists

csl5l 1



Linked List

e A linked list is a lists of objects.

e The objects form a linear sequence.

e The sequence is unbounded in length.
e Each object leads to the next

-

cslsl



Linked List, Array and ArrayList

e An array is a single consecutive piece of
memory, a linked list is made of many disjoint
pieces (the linked objects).

e ArrayList is between(ish)

Arra ArraYLISt . .
| Y Linked List
E(l)ﬁl;(r:: for —> A
ypes >R
— 1 5lC
— D
"'E

csl5l 3



Linked List versus Array

e Array
o quick access to any element
o slow insertion, deletion and reordering
(shifting required in general)
o Linked list

o quick insertion, deletion and reordering of
the elements

o Slow access (must traverse list)

cslSl1 4



Linked List Core

o the essential part of a linked list is a “self-
referential” structure.

e That is, a class with an instance variable that holds
a ‘reference” to another member of that same class

e For linked lists, this structure is usually called a
Node

private class Node<J> {
public J data;
public Node<J> next;
public Node (J data, Node<Jd> nx) {
this.data data;
this.next nx;

I

N

csl51



References in Java (Review)

o A reference variable holds a memory address to
where the referenced object is stored (not the
object itself)

o Reference types

o Anything that inherits from Object (including
String, Integer, Double, €tc)

o convention — initial capital letter

o “primitive” types: int, float, etc are NOT reference
types (value variables)

e A reference is null when it doesn’t refer/point
to any object

csl5l 6



public class ReferenceCheck {

}

References and equality (review)

public static

}

The “new” operator returns

void main(Stringl]l args) { a reference to an object of the

given type

equals should compare content!
default equals compares location
compareTo should compare content!

+ sl.equals(s2));
== s2));
== s3));
== s4));
== s3));
== s4));
== s4));

String s1 = new String("abc");
String s2 = new String("abc");
String s3 S2;
String s4 “abc";
String s5 “abc”;
System.out.println(“sl.equals(s2)
System.out.println("sl==s2 " + (sl
System.out.println("sl==s3 " + (sl
System.out.println "sl==s4 "+ (s1
System.out.println("s2 "+ (s2
System.out.println("s2 "+ (s2
System.out.println "+ (s3
cslsl

== compares memory location




Heads and Tails

e Given that one thing leads to another in a LL, need a place to start
e referred to as “head”
e If you know where the head is, you can get to everything in LL

e So, when working with LL there is almost always a value called
head (or front, or ...)

e Often it is useful to also have a value tail
e not required, just really useful
e Q: How do you know when at end of LL?

-

cslsl }

tail

;

head

>




Linked List interface

public interface LinkedListInterface<J>
{
int size();
boolean isEmpty();
J first();
J last();
void addLast(J c):
void addFirst(J c);
J removeFirst():
J removeLast();
boolean remove(J r):

No mention of nodes — they are not public!!
But this still egregiously violates encapsulation (why?)!!

csl5l 0



Starting Point

an Abstract Class

public abstract class AbstractLinkedList<J>

{
protected class Node<H>
{ Why doesn’t this
public H data; class implement
public Node<H> next; LinkedListInterface?
public Node(H data)
{
this.data = data; Or, why have both
this.next = null: abstract class and
} Interface?
}

protected Node<J> head = null;

csl51



iISEmpty() and first()

csl51



Size — in AbstractLinkedList

public int size() {
int siz=0;
Node<J> n = head;
while (n!=null) {
S1zZ++;
N= n.next;
I3
return siz;

}

e Algorithmic Complexity (Big-O)?
e Can we iImprove? .. .o

csl51



toString() for Linked List

again in AbstractLinkedList

public String toString() {
StringBuffer sb = new StringBuffer();
for (Node<J> node = head; node != null; node = node.next) {
sb.append(node.data.toString());
sb.append("\n");
¥

return sb.toString();

csl5l 13



public J last()

e Write in groups

Show my last with private utility



Inserting at the Talil

Get to the end

1. O(n)
2. Save time, add ] ]
an instance o Koy < K8

variable “tail”
Create a new node

Have new node point < Koy - o

to null
have old last node

point to new node Bl -

update tail to point
to new node

csl5l 15



Inserting at the Head

1.

Create a
new node

have new
node point
to old head \

head

g
:

update R42

head to
point to

newest

head

i

(b)

new node
ta - -m-

(©)

write addFirst at chalkboard

cslsl

16



Removing at the Head

. update
head to
point to
next node in
the list

. allow
“garbage
collector” to
reclaim the
former first
node

head

- -m-

R42

- -

(a)

—m-

(b)

8 g

— I -

(c)

csl51

17



void addLast(J c);
void addFirst(J c);

private Node<J> lastNode() {

}

public void addLast(J c) { public void addFirst(J c) {
Node<J> n = lastNode();
Node<J> newnode = new Node<>(c);
if (n == null) {
head = newnode;
return; 1

}

n.next = newnode;

}

csl5l 18



Deletion

public J removeFirst() {
if (head == null)
return;
Node<J> tmp = head;
head = head.next;
return tmp.data;

csl5l 19



removelast()

e Problem
e How do you remove the last
e Can we use the lastNode utility function?

e Not exactly, because to remove D we need to do things
to C

e Cannot go backwards!!

e So, need to search forward in list to find the node before the last

node
head

T

csl5l 20




Remove Last

public J removelLast() {

e To find the
node before
last use two
vars: prev and
here

e each time in
loop

e prev=here

e here=here.
next 1

csl5l 21



