Priority Queue

- A queue that maintains order of elements according to some priority
- Contrast to Queue which is FiFo

- **PriorityQueues are about the order in which things are removed, NOT the way in which they are stored.**
 - the items may or may not be sorted, or otherwise arranged.
 - This statement applies to stack and queues also, it is just convenient in those cases to arrange data to make retrieval easy
Complexity Analysis

<table>
<thead>
<tr>
<th></th>
<th>Unordered</th>
<th>Ordered (using SAL)</th>
<th>Heap Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>offer</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(lg n)</td>
</tr>
<tr>
<td>peek</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>poll</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(lg n)</td>
</tr>
</tbody>
</table>

Unordered PQ == Selection Sort
Ordered PQ = Insertion Sort
Binary Heap

- A heap is a “binary tree” storing keys at its nodes and satisfying:
 - heap-order: for every internal node \(v \) other than root, \(key(v) \geq key(parent(v)) \)
 - Heap is filled from top down and within a level from left to right.
 - at depth \(h \), the leaf nodes are in the leftmost positions
 - last node of a heap is the rightmost node of max depth
Binary Tree — terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
<td>A part of a tree.</td>
</tr>
<tr>
<td>Parent</td>
<td>A node that has children</td>
</tr>
<tr>
<td>Child</td>
<td>A node that has parents. Child nodes have exactly one parent</td>
</tr>
<tr>
<td>Binary Tree</td>
<td>A structure of nodes such that parent nodes have at most two children</td>
</tr>
<tr>
<td>Root</td>
<td>The node in a tree that has no parent.</td>
</tr>
<tr>
<td>Leaf</td>
<td>Any node that has no children</td>
</tr>
<tr>
<td>Height</td>
<td>The maximum distance from a the root node to a leaf.</td>
</tr>
<tr>
<td>Subtree</td>
<td>The part of a tree whose root is a given node</td>
</tr>
</tbody>
</table>
Height of a Heap

• A binary heap storing n keys has a height of $O(\log_2 n)$

• This is NOT true for general binary trees
Insertion into a Heap

• Insert as new last node
• Need to restore heap order
Upheap

• Restore heap order
 ▫ swap upwards
 ▫ stop when finding a smaller parent
 ▫ or reach root

• $O(\log n)$
Poll

- Removing the root of the heap
 - Replace root with last node
 - Remove last node
 - Restore heap order
Downheap

• Restore heap order
 ▫ swap downwards
 ▫ swap with smaller child
 ▫ stop when finding larger children
 ▫ or reach a leaf
• $O(\log n)$
Heaps are built on Arrays

- Parent from child
 - suppose child is at location childLoc in array
 - parentLoc = (childLoc-1)/2
- Child from Parent
 - suppose parent is at parentLoc in array
 - leftChild = parentLoc*2+1
 - rightChild = parentLoc*2+2

Locations of Parents and children are in strict mathematical relationship

- Parent from child
 - child at loc 4 (value 7)
 - parent is at (4-1)/2 = 1 (value 5)
- Child from Parent
 - parent at loc 2 (value 6)
 - leftChild =2*2+1 = 5 (value 1)
 - rightChild = 2*2+2 = 6 (value — not used)
Priority Queue using Heaps

startup

```java
public class PriorityQHeap<K extends Comparable<K>, V extends AbstractPriorityQueue<K, V>> {
    private static final int CAPACITY = 1032;
    private Pair<K, V>[] backArray;
    private int size;

    public PriorityQHeap() {
        this(CAPACITY);
    }

    public PriorityQHeap(int capacity) {
        size=0;
        backArray = new Pair[capacity];
    }

    @Override
    public int size() {
        return size;
    }

    @Override
    public boolean isEmpty() {
        return size==0;
    }
}
```
Heap Insertion
Priority Queue offer method

public boolean offer(K key, V value)
1. Ensure there is room — if not return false
2. Add new items to end of heap (low and left viewed graphically)
 first unoccupied viewed array-wise
3. Repeat until at root
 1. Compare with parent
 2. If greater, swap and continue
 3. If less stop
4. return true
Peek and Poll

```java
@Override
public V poll() {
    if (isEmpty())
        return null;
    Entry<K,V> tmp = backArray[0];
    removeTop();
    return tmp.theV;
}

@Override
public V peek() {
    if (isEmpty())
        return null;
    return backArray[0].theV;
}
```
private void removeTop()
{
 backArray[0] = backArray[size-1];
 backArray[size-1]=null;
 size--;
 int upp=0;
 while (true)
 {
 int dwn;
 int dwn1 = upp*2+1;
 if (dwn1>size) break;
 int dwn2 = upp*2+2;
 if (dwn2>size) { dwn=dwn1;
 } else {
 int cmp = backArray[dwn1].compareTo(backArray[dwn2]);
 if (cmp<=0) dwn=dwn1;
 else dwn=dwn2;
 }
 if (0 > backArray[dwn].compareTo(backArray[upp]))
 {
 Pair<K,V> tmp = backArray[dwn];
 backArray[dwn] = backArray[upp];
 backArray[upp] = tmp;
 upp=down;
 }
 else { break; }
 }
}
General Removal

- swap with last node
- delete last node
- may need to upheap or downheap

Heap:

```
  1
 /   \
5     6
  \
  9
   /
 11
  /  \
9    11
   /  \
17   15
    /  \
   17  19
    /  \
   21 21
    /  \
  27 22
```
Heap Insertion
Priority Queue offer method

```java
public boolean offer(K key, V value) {
    if (size >= (backArray.length - 1))
        return false;
    // put new item in at end data items
    int loc = size++;
    backArray[loc] = new Pair<K, V>(key, value);
    // up heap
    int upp = (loc - 1) / 2; // the location of the parent
    while (loc != 0) {
        if (0 > backArray[loc].compareTo(backArray[upp])) {
            // swap and climb
            Pair<K, V> tmp = backArray[upp];
            backArray[upp] = backArray[loc];
            backArray[loc] = tmp;
            loc = upp;
            upp = (loc - 1) / 2;
        } else {
            break;
        }
    }
    return true;
}
```