
CS151

CS151

Software Design

Java Generics

Generic Bags

1

CS151

Software Design Goals

• Robustness
▫ software capable of error handling and recovery
▫ programs should never crash

▫ ending abruptly is not crashing

• Adaptability
▫ software able to evolve over time and changing conditions

(without huge rewrites)

• Reusability
▫ same code is usable as component of different systems in

various applications
▫ The story of Mel — https://www.cs.utah.edu/~elb/folklore/mel.html

2

https://www.cs.utah.edu/~elb/folklore/mel.html

CS151

OOP Design Principles
• Modularity

• programs should be composed of “modules” each of which do their own
thing

• each module is separately testable

• Large programs are built by assembling modules

• Objects (Classes) are modules

• Abstraction

• Get to the core — non-removable essence of a thing

• Most pencils are yellow, but yellowness does not required

• Encapsulation

• Nothing outside a class should know about how the class works.

• For instance, does the Object class have any instance variables.
(Of what type?)

• Allows programmer to totally change internals without external effect

3

CS151

OOP Design

• Responsibilities/Independence: divide
the work into different classes, each
with a different responsibility and are as
independent as possible

• Behaviors: define the behaviors for each
class carefully and precisely, so that the
consequences of each action performed
by a class will be well understood by
other classes that interact with it.

4

CS151

Software design: Already discussed

• Good variable names

• Comments

• In Java

• Avoid statics

• Minimize main

• Use inheritance and class design

5

CS151

Class Definition

• Primary means for abstraction in OOP

• Class determines
▫ the way state information is stored – via

instance variables
▫ a set of behaviors – via methods

• Classes encapsulate
▫ private instance variables

▫ public accessor methods (getters)

6

CS151

Java Specifics
Constructors

• Constructors are never inherited
• A class may invoke the constructor of the class it extends via

a call to super with the appropriate parameters

• e.g. super()

• super must be in the first line of constructor

• If no explicit call to super, then an implicit call to the
zero-parameter super will be made

• A class make invoke other constructors of their own class
using this()

• this must be first

• Cannot explicitly use both super and this in single
constructor

7

CS151

BagOfPets & PetBag
• Design Goals:

• robustness
• Good

• adaptability
• poor

• reusability
• poor

• Design principles
• Modularity

• OK
• Abstraction

• poor
• encapsulation

• not great
• Conclusion: These kind of suck!

8

public class PetBag implements BagOfPets {
 /** The array holding the information in the bag */
 private Pet[] petArray;

 /**
 * The default constructor.
 * Creates a bag that can hold 100 pets.
 */
 public PetBag() {
 this(100);
 }
 /**
 * Constructor for pet bag
 * param sizeOfBag is the size of the bag
 */
 public PetBag(int sizeOfBag) {
 petArray = new Pet[sizeOfBag];
 }

CS151

Generify code
• Idea: write code without

being tied to Pets
• Approach 0

• Replace every mention of
Pet with Object.

• Since all class inherit
from Object, can put
anything into bag.

• Redefinition works!
• Until Java v5 this was only

solution
• ability to put ANYTHING

into Bag can cause
problems at run time

9

public class ObjectBag implements BagOfObjects {
 /** The array holding the information in the bag */
 private Object[] obArray;

 /**
 * The default constructor.
 * Creates a bag that can hold 100 things.
 */
 public ObjectBag() {
 this(100);
 }
 /**
 * Constructor for bag
 * param sizeOfBag is the size of the bag
 */
 public ObjectBag(int sizeOfBag) {
 obArray = new Object[sizeOfBag];
 }

CS151

Generics

• Idea: want Bag to store anything, BUT only one
kind of anything at a time.

• Let the specific thing be “bound” at compile time

• Avoid a lot of run-time problems

• Java: Generics

• Same idea appears in lots of other OO
languages, with slightly different syntax

•

10

CS151

Generic Interface

• Note the <S>
• This indicates a

“generic”
• Any single

capital letter
• Then “S” is

used in rest of
interface where
it was “Pet”

11

public interface BagOfStuff<S> {
 public int numberOfItems();
 public boolean isEmpty();
 public boolean add(S p);
 public S remove();
 public boolean remove(S p);
 public void clear();
 public int countOf(S p);
 public boolean contains(S p);
 public void display();
}

CS151

Generic Class

• Two uses of
<R>

• After that,
again, replace
all mentions of
“Pet” with “R”

• One trick:
making
generic array.

12

public class StuffBag<R> implements BagOfStuff<R> {
 /** The array holding the information in the bag */
 private R[] stuffArray;

 /**
 * The default constructor.
 * Creates a bag that can hold 100 stuff.
 */
 public StuffBag() {
 this(100);
 }

 /**
 * Constructor for stuff bag
 * param sizeOfBag is the size of the bag
 */
 @SuppressWarnings("unchecked")
 public StuffBag(int sizeOfBag) {
 stuffArray = (R[])new Object[sizeOfBag];
 }

CS151

Generic Bag Shelter
• Variable declaration

• says that this instance of
StuffBag can only hold Pet

• and descendents
• auto cast

• Variable Creation
• actually make an instance of

StuffBag that holds only Pets
• Access

• Get a Pet
• The instance still knows

what it is, but the code does
not.

• So to do something specific,
need to check then cast.

• Cannot be automatic

13

public class GBShelter {
 // the store for the animals in the shelter
 private StuffBag<Pet> animals;
 public GBShelter() {
 animals = new StuffBag<Pet>(100);
 }
 public void addAnimal(Pet animal) {
 animals.add(animal);
 }
 public Pet adoptRoulette() {
 return animals.remove();
 }
 @Override
 public String toString() {
 return animals.toString();
 }
 public static void main(String[] args) {
 GBShelter shelter = new GBShelter();
 shelter.addAnimal(new Dog("dave", "toy"));
 shelter.addAnimal(new WorkingDog("Jane", "BorderCollie"));
 shelter.addAnimal(new Cat("Calypso", "1", "Siberian"));
 Pet aa = shelter.adoptRoulette();
 if (aa instanceof Cat) {
 Cat c = (Cat) aa;
 System.out.println("I Got a Cat!!!!" + c + aa);
 }
 System.out.println(aa);
 System.out.println(shelter);
 }
}

CS151

Classes with multiple Generics

• You can have
many

• You can have
some generic
and some
not

14

public class KeyValue<U, V> {
 private final U key;
 private final V value;
 public KeyValue(U key, V value) {
 this.key = key;
 this.value = value;
 }
 public U getKey() {
 return key;
 }
 public V getValue() {
 return value;
 }
 @Override
 public String toString() {
 return "<" + key + ", " + value + ">";
 }

 public static void main(String[] args) {
 KeyValue<String, Integer> ksvi = new KeyValue<>("key", 1);
 KeyValue<Double, StringBuffer> kdvsb = new KeyValue<>(3.1415, new
StringBuffer("Now is the time"));
 System.out.println(ksvi);
 System.out.println(kdvsb);
 }
}

CS151

In Class

• Use StuffBag to store KeyValue pairs

• Adapt stuffBag to only take one instance
of a given object

• that is, a set rather than a bag

• use equals not ==

• Adapt KeyValue so that equals tests for
same key rather than same object

15

