
1

CMSC 113 – COMPUTER SCIENCE 1
Lab#5 1-StdIn & StdOut Libraries – Practice

In this lab you will learn and practice how to use the StdIn and StdOut libraries for doing some
interactive user input as well as formatted output and also use Linux’s I/O redirection features. See
Section 1.5 of your text.

Task#1: Review – System.out/StdOut

The System.out/StdOut libraries provides four useful output functions, as show below.

The printf() function is a powerful output function that provides a way to nicely format the output
of your programs. The general form of the System.out.printf()/StdOut.printf() can be
described as:

System.out.printf(<how to print>, <what to print>);

<how to print> is a String (called a format string) that encodes exactly how the string to be printed
will appear. <what to print> is a comma-separated sequence of variables (there may be zero or more).
Here are some simple examples:

System.out.printf(“\n”) // This is equivalent to System.out.println()
System.out.printf(“Hello, World!\n”) // Equivalent to StdOut.println(“Hello, World!”)
 // or System.out.println(“Hello, World!”)
System.out.printf(“%d\n”, x) // where x is an int variable
 // This is equivalent to StdOut.println(x) or System.out.println(x);
System.out.printf(“%6d\n”, x) // Prints the value of x so it takes exactly 6 spaces (rt. justified)
System.out.printf(“%-6d\n”, x) // Prints x so it takes exactly 6 spaces (left justified)
System.out.printf(“%d %d\n”, x, Y) // Prints the values of x and y separated by a SPACE

The following figure describes more details of the StdOut.printf() function:

The codes used in the print specification (for example, f in the figure above, or d in examples above)
indicate the type of value to be printed: d (int), f (double), s (String), b (boolean). Before
proceeding, please be sure to review the information above.

2

Task#2: Using System.out.printf()

Read the program below carefully.

public class Roots {
 // Prints out a table of Square Roots of numbers from 1 to 10
 public static void main(String[] args) {
 int n = 10;

 for (int i=1; i <= n; i++) {
 System.out.printf(“%d. %f\n”, i, Math.sqrt(i));
 }
 } // main()
} // class Roots

Write and run the program above. Please ensure that you have typed the program EXACTLY as shown
above. Compile and run it. Observe the results.

Next, modify the print statement to the following:

System.out.printf(“%3d. %5.2f\n”, i, Math.sqrt(i));

Compile and run the program and observe how the table is now formatted, and the values of square
roots are nicely rounded to two decimals places. Play with some other format values and see how the
formatting changes.

Finally, add commands to the program above to produce a table that looks exactly like the one shown
below:

 # Square Root

 1. 1.00
 2. 1.41
 3. 1.73
 4. 2.00
 5. 2.24
 6. 2.45
 7. 2.65
 8. 2.83
 9. 3.00
 10. 3.16

Show your resulting program and its output to the instructor.

3

Task 3: Review – StdIn

The StdIn library provides several useful input functions to perform interactive input of various types
of data. The table below summarizes all the functions available in StdIn library:

Review these quickly and focus especially on the first group of functions. We will use some of these
next.

Task 4: First, consider the program shown below:

public class Hello {
 // Inputs a name and says Hello
 public static void main(String[] args) {
 String name;
 StdOut.print(“Please enter your name: ”);
 name = StdIn.readString();

 StdOut.printf(“Hello, %s!\n”, name);
 } // main()
} // class Hello

The program above prompts the user to enter a name (using Std.ReadString()) and then prints out
a greeting (using StdOut.printf()). Enter, compile, and run the program above and make sure you
understand how the simple interaction is coded.

4

Task 5: Read, study, enter, compile, and run the program below:

Next, create a small data file (data.txt) in the same directory as your AddInt.java program. In it,
enter the four numbers shown in the example above (144, 233, 377, and 1024) so that one number
appears on each line. Once done, run your program using the command:

$ java-introcs AddInts 4 < data.txt

What happened? You just used Linux’s I/O redirection so that your program, instead of taking input
from the keyboard, takes it from the file data.txt.

Try create a much longer data file, say with 20 numbers in it. Then run the program:

$ java-introcs AddInts 20 < data.txt

Task 5: Write a program RandomInts.java, that generates n random numbers in the range [1..1000]
and prints them out on the screen (one number per line). Here is an example use:

$ java-introcs RandomInts 5
765
211
90
512
67

Once done, you can use the two programs above (RandomInts to generate 20 random numbers, and
AddInts to add them):

$ java-introcs RandomInts 20 | java AddInts 20

Task 6: Modify AddInts to compute the average of all the integers and print it out (only up to 2 decimal
places). Test your program using the commands:

$ Java-introcs AddInts 4
144
233
377
1024
Average is 444.50

Once correct, try the following:
$ java-introcs RandomInts 1000 | java AddInts 1000

