
1

CMSC 113 – COMPUTER SCIENCE 1
Lab#1: Hello Computer Science, Linux, Bash, Java !

Objective

Familiarize yourself with the Linux environment, the bash command line shell (basic commands), and
write your first Java program and learn how to compile and run a program using VS Code editor and the
Java compiler.

This lab has two parts (PART 1 and PART 2). At the end of each part, you are asked to fill out the Lab
Report (last sheet in this handout). This charts your progress in this lab. Please remember to submit the
Lab Report to your instructor before leaving the lab. Submitting the report will count as proof of
attendance in the lab. You are not required to complete everything in the Lab Report. Please, feel free to
ask for help from your instructor during the lab.

PART 1: Starting the computer, logging in, and creating a course folder

1. First, make sure you start the computer in Linux
The computers in the CS labs are configured to run two operating systems: Windows & Linux.
Today, you will be doing your lab work using Linux.

First make sure the computer is started into the Linux operating system. If you see a purple
Login screen then you are using the Linux system. If you see the Windows start screen, restart
the computer you can click the RESTART button (if you see one), or press the POWER button on
the computer.

Keep a close eye on your screen as the computer starts up and you will get a white screen with a
Windows Logo and a Linux Logo next to it. By default, the computer will start as a Linux system.
[To start into Windows press the LEFT ARROW key on the keyboard to select the Windows icon.
Then press RETURN.]

Now that you have the Linux login screen (the purple screen), proceed to the next step.

2. Log in
In the login screen enter your username and password provided to you by your instructor. If you
do not have a log in username/password, please see your instructor.

3. Working with the Linux command line
Before doing any Java programming, let’s do a warmup on learning and working with the
command line. First, log in to your Linux account.

Next, you will open a CLI window (aka Terminal emulator). Click on Activities (top-left corner of
the screen) and enter Terminal in the search window that pops up. From the options it then
gives you, click on the icon that is labelled Terminal. A window will pop up in the middle of
your screen and it will have a prompt that may look something like this:

[xena@codewarrior ~]$

The above is a command prompt, implying that the system is ready for your commands. The

2

command prompt is preconfigured to show your username (in this case, xena), the symbol @,
followed by the name of the computer you are logged into (in this case, codewarrior). This is
then followed by the symbol “~” (which stands for your current home directory), and finally
ends with a “$”.

You type commands at the prompt and when you hit the RETURN key, the command is executed
or carried out. For example, enter the command “whoami”:

[xena@codewarrior ~]$ whoami
xena

The whoami command reports back the username of the person currently logged in (in this
case, xena). Next, let us learn some other basic commands.

What is my present directory (i.e. home directory): pwd

[xena@codewarrior ~]$ pwd
/home/xena

Directories are organized in a tree structure. Reading the result of the above command from left
to right, “/” represents the root directory, home is a subdirectory of / that is the parent
directory of all users on this computer, of which xena is one. After the first /, the rest of the /’s
are used to separate subdirectories under them. The string /home/xena is also called a
directory path. For users, the symbol “~” is a shorthand for their home directory /home/xena.
More on this later.

We will make a new directory, called cs113 (/home/xena/cs113), so that you can store all
your files related to this course in or under that directory. To make a new directory, use the
command: mkdir

[xena@codewarrior ~]$ mkdir cs113
[xena@codewarrior ~]$

While there is no visible result, the prompt reappears, this creates a directory, cs113, in the
home directory (xena). Since directories are organized in a tree structure cs113 is a
subdirectory under your home directory. To examine the contents of a directory, the command
ls is used (ls stands for show a listing of this directory):

[xena@codewarrior ~]$ ls
abc.txt cs113 hello.java
letters mail

It appears from above that xena’s home directory contains five items: a text file-abc.txt, the
cs113 directory (just created), a Java program-hello.java, etc. Thus, in Linux, files and
directories coexist in all directories. One way to tell files apart from directories is to note the file
extension(s). For example, “.txt” indicates a text file, “.java” is a Java program, etc. Later we
will see how you can tell which is which.

3

You can navigate in and out of directories using the cd command (cd stands for change
directory):

[xena@codewarrior ~]$ cd cs113
[xena@codewarrior cs113]$

Look at the new prompt, it clearly indicated that you are now in the cs113 directory. Go ahead
and issue the pwd command now:

[xena@codewarrior cs113]$ pwd
/home/xena/cs113

Also, use the ls command to examine its contents. It should be empty. You will just get the
prompt back.

The cd command can be used to navigate to any directory. You will use it to navigate up and
down a directory tree. For example, when you are in the cs113 directory (as you would be if
you are following along), you can go up into its parent directory (/home/xena) by doing:

[xena@codewarrior 246]$ cd ..
[xena@codewarrior ~]$

Try it one more time:

[xena@codewarrior ~]$ cd ..
[xena@codewarrior /home]$ pwd
/home

Thus, “..” is shorthand for the parent directory. You can also enter the entire directory path to
go to that directory:

[xena@codewarrior ~]$ cd /home/xena/cs113
[xena@codewarrior cs113]$ pwd
/home/xena/cs113

No matter what directory you are in, you can always get to your home directory by just typing
the cd command by itself:

[xena@codewarrior home]$ cd
[xena@codewarrior ~]$

Also, try the command: cd ~

What does it do? Next, try this: Navigate to go to the root directory (/). Check, using pwd, to
make sure that you are there. Check its contents (using ls). Then, to go back to your cs113
directory, enter the command: cd ~/cs113

Now that you are comfortable travelling in and out of directories, we can learn about copying

4

files from one directory to another. The simplest form of a copy command is:

cp item1 item2

This command creates a copy of file item1 into a file named item2, both in the same directory.
Alternately, you can also specify to copy a file into another directory:

cp item1 directory-path

This command creates a copy of item1 into the directory specified. The resulting copy will also
be named item1. See item#5 in the exercise below for an example.

Exercise 1: Do the following:

Navigate to the directory ~dkumar/CMSC113/LabPrograms/Lab1

Check its contents, using ls.

You will notice a file named README.txt

In order to read the contents of the file you can use any of the following commands:

cat README.txt
more README.txt
less README.txt

These commands will each show the contents of the file specified. You will not notice any
difference in the way these commands behave. We will examine these later.

Before starting the next exercise, please answer Question 1 in Lab 1 Report.

Exercise 2: Using the commands you have learned above, answer Question 2 on the Lab1
Report.

PART 2: Creating your First Java Program

As shown in class, creating and running Java programs requires three steps:

• Use an editor to write the program and save it in a file (extension .java) – VS Code
• Compile the Java program. Correct any syntax errors reported – javac-introcs
• Run the program – java-introcs

Let’s see how we do this. First, we need to have a program we’d like to run:

class HelloWorld {
 public static void main(String[] args) {
 System.out.println(“Hello, World!”);
 } // main()
} // class HelloWorld

5

1. Use VS Code to create a program/source file.

Start VS Code by entering the command – code:

[xena@codewarrior home]$ code

The VS Code window will start. Enter the program above into a file called HelloWorld.java. The
name of the file should be the same as the name of the class (always!). Make sure you have saved
the program in the cs113 directory. [Optional: You may want to create a directory, called Lab1, and
do this there.]

2. Compile the program.

To compile the program, use the following command in the command shell:

[xena@codewarrior home]$ javac-introcs HelloWorld.java
[xena@codewarrior home]$

Depending on how correctly you typed your program, you may or may not have any syntax errors. In
case there are no errors, the prompt will be returned as shown above. Otherwise, these will be
reported following the command. You will then have to correct the errors in the Atom window, save
the file, and then try to compile again.

So, what is the purpose of compiling the program? Well, one is to detect and ensure that what you
entered is a correct Java program. Second, to translate the Java program into Java byte code. This is
essentially a version of your program translated into a more primitive language that a Java Virtual
Machine (JVM) will be able to understand and run it. More on that in class.

The byte code generated by the compiler is stored in a new file. In this case, since we defined the
class HelloWorld, the file will be called HelloWorld.class. Go ahead and look at the contents
of your cs113 directory (using ls). You will see the file HelloWorld.class sitting there. We are
now ready to run your program.

3. Run the program

You run the program by invoking the JVM (which is called java-introcs). The JVM needs to know
the name of the class that makes up your program (i.e HelloWorld). Here is the command:

[xena@codewarrior home]$ java-introcs HelloWorld
Hello, World!
[xena@codewarrior home]$

The program runs, you can see its output on the line after the java command. And a new prompt is
returned. You can now run the program again, using the same command.

6

Exercise 3: Write a new program, called JavaJoe, that prints out the following lyrics:

I love coffee
I love tea
I love the Java Joe
And it loves me

Exercise 4: Write the program, UseArgument that is described on Page 7 (Program 1.1.2) of your text. It
is shown below:

public class UseArgument {
 public static void main(String[] args) {
 System.out.print(“Hi, ”);
 System.out.println(args[0]);
 System.out.println(“. How are you?”);
 } // main()
} // class UseArgument

 You will store it in a file, UseArgument.java. Compile it (using javac-introcs), and run it using the
command:

java-introcs UseArgument <your name>

Once done, answer Question 3 in the Lab Report and submit the Lab Report to your instructor. You are
done for the day. Congratulations!

Time to Digest

In PART 1, you learned some basics of using the Linux command line interface (CLI) through a terminal
window. Review the following commands:

whoami
pwd
mkdir
ls
cd
cp
mv
cat/more/less

In PART 2 you learned how to create, compile, and run simple Java programs.

This is a good start. Before next lab, please review Section 1.1 of your text and try out all Exercises (1.1.1
through 1.1.6).

Burp!

