
CMSC B113 Computer Science 1 – Spring 2025
Programming Assignment #2

1

Overview
In this assignment you will write three separate programs (see Part 1, Part 2, and Part 3). Read
through all the parts first before starting. You can choose to do the parts in any order.

In completing this assignment, you will learn to:

● Use if-statements and for/while-loops in a Java program
● Use the Math.random() function to generate random numbers
● Learn how to implement (code) the steps of an algorithm into Java statements.

Note that in this assignment, you will also be asked to write up a brief report regarding your
findings and observations. Be sure to allocate time for doing that write-up, in addition to
programming and testing your solution. Please be sure to get an early start on the assignment.

Part 1: Computing the average of N random numbers
Write a program that takes an integer command line argument N, uses Math.random() to print
N random values in [0.0 .. 1), and then prints their average value.

Let us begin by first writing a program segment to generate and print N random numbers. It
should have the following statements:

// Input N from the command line
int N = Integer.parseInt(args[0]);

// Generate N random numbers in [0.0 .. 1.0)
for (int i=1; i <= N; i++) {
 double x = Math.random(); // generates a random number
 System.out.println(x); // prints it out
}
The above statements generate N random numbers and print them out. Write a complete Java
program called Average.java (we have not yet done the averaging part, but that will be next)
that uses the above statements to generate and print out N random numbers.

Once done, you can run the program as shown below:

$ java-introcs Average 10

It should print out ten random numbers in the range [0.0 .. 1.0). Observe the numbers to ensure
that they do appear random. Run the program again to generate ten more random numbers. Did
you get the same ten random numbers? They should be different. That is, Math.random()
generates different sets of ransom numbers each time it is used.

Next, to compute the average of N numbers, here is the algorithm:

CMSC B113 Computer Science 1 – Spring 2025
Programming Assignment #2

2

1. Input N
2. Set sum ← 0.0
3. Repeat N times
3.1 Set x ← random number in [0.0 .. 1.0)
3.3 Print x
3.4 Add x to sum
4. Set average ← sum/N
5. Output the average

Modify Average.java to implement the above algorithm. Run it for N = 10 several times and
note the average value printed. Is it always the same? It shouldn’t be. Is it close to 0.5?

If the numbers are random, their average should be 0.5. Right? This is true only for very large
values of N. Before you try to run your program for very large values of N, comment out the
code that implements Step 3.3, so you will not print screen and screen of random numbers!

Next, run the program for N = 100, 1000, 10000, etc. (you can go as high as 1 billion!) until you
see values very close to 0.5 (say within +/- 0.00001. What is that N?

What to hand in:

For Average.java, print out the final version of the complete program. Run the program for N =
10, showing the random numbers generated and their average. Next, run the program for a
value of N that converges to within 0.5 +/- 0.00001. Include these outputs at the end of your
program. You may cut and paste the program runs and their outputs.

Part 2: Computing Square Root of a number

Let us learn how to compute square roots of a number using a calculator. Then you will write a
Java program to do the task.

To compute the square root 𝑥𝑥 = √𝑎𝑎 do the following:

1. Start with some guess 𝑥𝑥1 > 0
2. Compute a sequence of guesses 𝑥𝑥1,𝑥𝑥2, …, 𝑥𝑥𝑛𝑛 using the equation:

𝑥𝑥𝑛𝑛+1 =
1
2

(𝑥𝑥𝑛𝑛 +
𝑎𝑎
𝑥𝑥𝑛𝑛

)

until the numbers produced converge.

Do This: Put down this book and get a piece of scratch paper and pencil. And a calculator. You
will need one. Compute the square root of a = 2 (i.e. √2) using the above formula. Start with
𝑥𝑥1 = 1. Next, write down your answer for values of 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, etc. You should get something like
the sequence shown below:

CMSC B113 Computer Science 1 – Spring 2025
Programming Assignment #2

3

𝑥𝑥1 = 1
𝑥𝑥2 = 1.5
𝑥𝑥3 = 1.416666667
𝑥𝑥4 = 1.414215686
𝑥𝑥5 = 1.414213563
𝑥𝑥6 = 1.414213562
𝑥𝑥7 = 1.414213562

Were you also able to compute √2 correctly?

Depending on the calculator you used you will get the same result as above. On our calculator,
we were able to get values with a precision of 9-digits after the decimal. Yours may be different
in the number of digits of accuracy. We stopped after the same value was produced twice in a
row (see 𝑥𝑥6 and 𝑥𝑥7 above). That is, the sequence converged.

Congratulations! You were just a computer. And, you did some computing!

Next, we will use the algorithm above to compute square roots on the computer. Write a Java
program Sqrt.java that inputs a number a (type double) and computes and prints out √𝑎𝑎. For
example,

$ java-introcs Sqrt 2.0
The square root of 2.0 is 1.414213562373095

$ java-introcs Sqrt 3.0
The square root of 3.0 is 1.732058075688772

While the steps to compute the square root we presented above were sufficient for us to follow
and successfully compute √𝑎𝑎 we will need to be a little more precise in specifying the algorithm
into steps that can be coded into a computer program. Here is such an algorithm:

1. Input a
2. Set 𝑥𝑥0 ← 0.0
3. Set 𝑥𝑥1 ← 1.0
4. While 𝑥𝑥1 ≠ 𝑥𝑥0 do
4.1 Set 𝑥𝑥0←𝑥𝑥1
4.2 Set 𝑥𝑥1←

1
2

(𝑥𝑥0 + 𝑎𝑎
𝑥𝑥0

)
5. Output 𝑥𝑥1

Notice that we translated 𝑥𝑥1, 𝑥𝑥2, … to just two variables 𝑥𝑥0 and 𝑥𝑥1. You can use the variable
names X0 and X1 isn your Java program since Java does not allow subscripts.

Study the algorithm carefully, and write down the Java commands that implement each of the
steps in your notebook. Then enter the program, compile, and run it to ensure correctness.

CMSC B113 Computer Science 1 – Spring 2025
Programming Assignment #2

4

What to Hand in
Once completed, as you did in Part 1, print out the final version of the complete program. Run
the program for inputs 2.0 and 3.0, showing the results Include these outputs at the end of your
program. You may cut and paste the program runs and their outputs.

Part 3: Figure Skating Judging
In the winter Olympics, a figure skater’s score is determined by a panel of six judges who each
decide a score between 0.0 and 10.0. The final score is determined by discarding the high and
low scores and averaging the remaining 4. Write a program SkatingScorer.java that takes 6
real command line inputs representing the 6 scores and prints their average, after throwing out
the high and low scores.

Start, as above, by first writing an algorithm on a piece of paper. In fact, focus first on computing
the average of all six scores. Once that is completed, add the steps to compute the smallest
score. Here is an algorithm to compute the smallest of three numbers:

To compute the smallest of three numbers: a, b, and c do the following:
1. Assume that a is the smallest number: Set min ← a
2. See if b is smaller than min: if b < min
2.1. Set min ← b
3. See if c is smaller than min: if c < min
3.1 Set min ← c
4. min now contains the smallest number in a, b, and c.

You can extend the above for six numbers. Write and test your program to compute the smallest
of the six numbers and eliminate it from the average. Once done, test the program to see that
you are getting correct results. Finally, adapt the above to find the largest score and eliminate
from computing the average.

What to Hand in
Once completed, as you did in Parts 1 and 2, print out the final version of the complete program.
Run the program for inputs [9.0, 9,5, 10.0, 8.2, 9.0, 9.1] and [10.0, 10.0, 10.0, 9.0, 10.0, 10.0],
and [8.0, 8.0, 8.5, 9.0, 8.5, 9.5], showing the results. Include these outputs at the end of your
program. You may cut and paste the program runs and their outputs.

What/How to Submit
Once you have completed the assignment, write a short reflection on your experience and what
you learned from this assignment. To print all the parts, you can create a single text document,
and print the document as your submission.

