
CMSC B113 Computer Science 1 – Spring 2025 
Programming Assignment #1 

1 
 

 
Overview 
Websites such as Google Maps, Mapquest, Apple Maps, Tomtom, Bing Maps, and others are 
used by millions of people each day to get directions from one place to another and to get an 
idea of how long their travel will take. 
  
In this assignment, you will implement some small programs that perform calculations related to 
time and distance, similar to what would be used in a map/directions application. 
  
In completing this assignment, you will learn to: 
 

● Understand and address Java compiler and runtime errors 
● Declare, initialize, and update variables in a Java program 
● Perform mathematical operations in a Java program 
● Write programs that get input from the command line 
● Write to the terminal in a Java program 

 
Even if you have prior programming experience, it is strongly recommended that you get an 
early start on this assignment. There are four parts, and you don’t necessarily need to do them 
all in one sitting, but you don’t want to wait too long to get started! See the “Getting Help” 
section toward the bottom of this document if you need support in completing this assignment. 
 
Part 1: Debugging 
Debugging is a huge part of the process of programming, and you may often find yourself 
spending more time debugging your code than you did writing it in the first place! 
 
There are typically three types of errors that you may run into while programming: 
 

● Compiler error: this is where the code will not compile when you run “javac-introcs” 
because the code is not valid Java. Also called syntax error. 

● Runtime error: this is where the code compiles, but then performs an illegal operation 
when you run “java-introcs”, which then causes the program to crash 

● Logical error: this is where the code compiles and the program runs to completion, but 
produces the wrong output 

 
In this part of the assignment, you will get a little bit of experience in understanding the types of 
error messages that Java may display when it runs into a problem. 
 
Open VS Code, and create a new file by selecting File → New File from the menu, then select 
File → Save to save the file in your cs113 directory and name it Time.java. 
 
 
 
 



CMSC B113 Computer Science 1 – Spring 2025 
Programming Assignment #1 

2 
 

 
 
 
Then copy/paste the following code so that the file contains only these lines: 
 
 
public class Time { 
    public static void main(String[] args) { 
        int minutes = Integer.parseInt(args[0]); // convert String on int 
        System.out.printlm(minutes + “ minutes”) 
    } // main() 
} // class Time 
 

 
Be sure to save the file after you have added the code! 
 
Before you edit the program to address any errors, you need to first compile it. If the Terminal 
window is not already open on the bottom of the screen, select Terminal → New Terminal from 
the menu; the terminal that opens should read “bash” in the upper right corner. 
 
First, compile the code with this command: javac Time.java 
 
You should see the following error message: 
 

Time.java:4: error: ';' expected 
        System.out.pritln(minutes + " minutes") 
                                               ^ 
1 error 

 
Based on the error message provided by the compiler, modify the code to fix the problem. Once 
you have fixed it, save the file and recompile it, and continue to fix any compiler errors that you 
receive (hint: there may be more than one!). 
  
Once you have fixed all the errors, you will no longer see any error messages. Now you can run 
the program with the command: java Time 10  
 
Depending on the changes you made, you may receive an error here, too! If so, fix the error in 
the code, save the file, recompile it, and re-run it; keep in mind that you must recompile it before 
you re-run it! 
 
Once the program displays “10 minutes”, then you’re ready to move on to the next part! 
 
 
 



CMSC B113 Computer Science 1 – Spring 2025 
Programming Assignment #1 

3 
 

 
Part 2: Converting Time 
In determining how long a journey will take, a map/directions application such as Google Maps 
may calculate the time only in minutes, but then display it to the user in hours and minutes so 
that it’s easier to understand. 
 
Modify the Time program from Part 1 so that, instead of just displaying the number of minutes, it 
converts it to the equivalent in hours and minutes and displays that instead. Here are some 
sample program executions and expected outputs: 
 
java-introcs Time 127 
2 hours and 7 minutes  
 
java-introcs Time 453 
7 hours and 33 minutes 
 
java-introcs Time 360 
6 hours and 0 minutes 
 
java-introcs Time 77 
1 hours and 17 minutes 
 
Note that the last example is not grammatically correct but it’s okay for now! You’ll fix this in a 
later assignment. ������� 
 
You may assume that the input to the program is a positive integer, i.e. a whole number greater 
than 0. You do not have to worry about the case in which the input is missing, a negative 
number, a fraction, something that’s not a number, etc. 
 
 
 
Part 3: Estimated Time of Arrival 
Once a map/directions application has determined a route from a starting point to the 
destination, it can tell the user the approximate time that they’ll arrive, based on knowing the 
current time and how long it will take to travel. 
  
Write a Java program called Arrival that takes as input the current time, the distance to travel, 
and the expected average speed, and prints the estimated arrival time. The four program inputs 
(or “runtime arguments”) should be as follows, in this order: 
 

● h = the hour portion of the current time, ranging from 0-23 
● m = the minutes portion the current time, ranging from 0-59 
● d = the distance to be traveled, in miles 
● s = the expected average speed, in miles per hour 



CMSC B113 Computer Science 1 – Spring 2025 
Programming Assignment #1 

4 
 

 Here are a few sample runs of the program: 
 
java-introcs Arrival 11 10 15 60 
Arrival Time is 11:25 
 
java-introcs Arrival 15 50 125 50 
Arrival Time is 18:20 
 
java-introcs Arrival 22 15 110 60 
Arrival Time is 0:5 
 
Note that in the last example, the time would ordinarily be displayed as “00:05” but it is okay to 
omit the leading “0” for the purposes of this assignment. 
  
After reading the four runtime arguments, your program should be implemented according to 
these steps: 
 

1. Calculate the travel time t = d / s * 60; note that you need to multiply by 60 since s is 
miles per hour but we want t in minutes. Hint! Think about which datatypes you should 
use to store t, d, and s, keeping in mind what you have learned about integer division. 

2. Update the minutes portion of the arrival time: m = m + t 
3. Since this number of minutes may exceed one hour, update the hours portion of the 

arrival time: h = h + m / 60 
4. Since the minutes portion of the arrival time may exceed 59, calculate the correct value 

to display: m = m % 60 
5. Since the hours portion of the arrival time may exceed 23, calculate the correct value to 

display: h = h % 24 
6. Display the results using “h:m” 

  
You may assume that the four inputs to the program exist and are positive integers, and that h 
is between 0-23 and that m is between 0-59. 
  
Part 4: Calculating Great Circle Distance 
For very long journeys, for instance between cities on two different continents, a map/directions 
application will estimate the distance using the cities’ geographical latitude and longitude 
coordinates. 
  
Since the earth is a sphere and not a plane, though, the application cannot use simple 
Euclidean distance but rather must use the “great-circle distance,” which measures the distance 
between two points on a sphere. 
  
Write a program called Distance that takes four runtime arguments as doubles — x1, y1, x2, 
y2, representing the latitude and longitude, in degrees, of two points x and y on the earth — and 
prints the great-circle distance between them. 



CMSC B113 Computer Science 1 – Spring 2025 
Programming Assignment #1 

5 
 

  
The great-circle distance d is given by the following equation: 
 
d = E * arccos(sin(x1) * sin(x2) + cos(x1) * cos(x2) * cos(y1 - y2)) 
 
where you can use the earth’s radius E = 3986 miles. 
  
Since x1, y1, x2, and y2 are meant to be doubles, you will need to use the 
Double.parseDouble function to convert the program inputs from Strings to doubles. 
 
To calculate the distance, you will need to use the Math.sin, Math.cos, and Math.acos 
functions to perform the sine, cosine, and arccosine trigonometric functions, respectively. For 
instance: 
 
double s = Math.sin(angle); 
 
returns the sine of angle and stores it in the variable s. 
 
However, the latitude and longitude of the two points are in degrees, whereas Java’s 
trigonometric functions use radians. Use Math.toRadians(a) to convert the angle a from 
degrees to radians before using the sine and cosine functions. 
  
The following example shows the output for the distance between Philadelphia (39.9526 N and 
75.1652 W) and Honolulu (21.3069 N and 157.8583 W): 
  
java-introcs Distance 39.9526 75.1652 21.3069 157.8583  
4945.290632589314 miles 
  
This next example shows the distance between Paris (48.87 N and -2.33 W) and San Francisco 
(37.8 N and 122.4 W): 
  
java-introcs Distance 48.87 -2.33 37.8 122.4 
5598.250822014901 miles 
  
You may assume that the four inputs to the program exist and are all valid latitudes and 
longitudes, i.e. are floating-point numbers between -180.0 and 180.0, inclusive. 
 
  
 
 
 
 
 
 



CMSC B113 Computer Science 1 – Spring 2025 
Programming Assignment #1 

6 
 

Getting Help 
Learning how to program can be quite challenging at first and it is completely normal to struggle 
and run into issues on your first assignment. Don’t get discouraged, though! You learn by 
overcoming that struggle and finding ways to address the issues that you face. 
  
If you find yourself stuck on this assignment and not making progress for, say, 30 minutes or so, 
then the best thing to do may be to walk away from it for a while and try to think about 
something else. It often is the case that your brain just needs a rest, and that the solution will 
seem a bit clearer if you look at it with a refreshed mind. 
  
If you’re still stuck, though, then don’t worry! The CMSC B113 instruction staff is here to support 
you and to help you do well on this assignment. 
  
The course Teaching Assistants (TAs) are available for drop-in office hours in Park 230 and 231 
in the evenings from Sunday through Thursday (see hours posted on course website). You do 
not need an appointment for these TA Hours: you can just show up and the TA will help you as 
soon as they can. 
 
Academic Honesty 
Unless otherwise noted, all Programming Assignments in this course are subject to the College 
Honor Code and to the course policy on academic honesty as presented in the syllabus in 
Moodle. 
 
We trust that you will not discuss the details of your solutions or share code with any of your 
classmates. Although it is okay to discuss the intent of the assignment with classmates and to 
ask for help with clarification, the work that you submit should be your own. After all, the 
purpose of these assignments is for you to learn how to program in Java, and you won’t learn as 
much if someone else is doing the work for you! 
 
Please consult with the instructor if you have any questions about what is and is not permitted. 
 
What to Submit 
The due date for the assignment is posted on the course website. All assignments are due at 
the start of class on the due date. Your submission should contain a printout of all your 
programs, plus a printout of the sample runs (use the examples in this handout for sample 
inputs and confirm the results shown) to show that your program produces correct results. You 
can cut and paste everything into a well formatted Word document and print that out. Write up a 
short note on your reflections from doing this assignment. Staple all the sheets together and 
leave your submission at the front desk in class as you enter. 
 
 


