
 1 

CMSC 113: Computer Science I 
Midterm Project: Rescue 

due on Gradescope by the beginning of class on February 27, 2018 
 
For this project, you will write the game Rescue. The aliens have decided to return all of 
the Robins they abducted. However, they refuse to land and let the Robins off. Instead, 
they drop Robins one at a time from their mother ship. Your task is to control a mattress 
so that all of the Robins land safely. 
 
The Rescue Project is broken into three parts. It is best to proceed by doing one part at a 
time. Get everything about Part I working before going on to Part II, for example. 
 
Collaboration Policy: You may choose to work with a partner for this project. If you 
work with a partner, let me know as soon as you make your decision. If you choose not to 
work with a partner, you must follow the guideline "If you're talking in Java, you've gone 
too far." Remember, I take a breach of this policy seriously – if you're uncertain, ask 
before making any assumptions. 
 
Part I. Write an applet that shows a mother ship pacing back and forth horizontally 
across the top of the applet window. Assume the applet is 200 pixels wide by 200 pixels 
tall. Use a compound object MotherShip to represent the mother ship. Your compound 
object must have a method named update, which moves the mother ship one step 
forward and handles turning around at the sides of the applet. All of the logic around 
bouncing must be in the MotherShip compound object. Recall that compound objects 
work best if the drawn elements within the object are centered at or near the hotspot (the 
origin in the local coordinates of the object). 
 
Extra challenge: Implement the MotherShip class as above, but make the ship speed 
up every time it moves. To ensure the ship speeds up in a smooth manner, use a double 
field to store the speed of the ship. In the online example, the ship's speed after an update 
is .01 faster than its speed before. 
 

 
A lot of people have trouble getting this to work. They think that 
when you detect that the ship has gone past the right edge, make 
it move left. But that doesn't work! The ship does move left one 
pixel, but then moves right again. The trick is to have a field to 
control the ship's direction. 

 
Part II. Add a mattress to the bottom of the applet. When the user presses the left- or 
right-arrow keys, the mattress moves accordingly. The mattress should always move 
smoothly and should always stay completely on the screen. 
 
Use a Mattress compound object. Your Mattress class should have an update 
method that takes a parameter saying how much to move by; negative numbers move left 



 2 

and positive numbers move right. The method should check to make sure the mattress 
will stay on the screen and then move. 
 
Extra challenge: Make it so that the applet tracks the total number of pixels the mattress 
has moved. Do this using a field in the Mattress class. The only extra field you should 
add to the applet is a GLabel field. 

 
Part III. Add the following features: 

- The mother ship should drop one Robin at a time. The Robins fall straight 
downward. Implement this by using a Robin class with an update 
method that moves it down. 

- When a Robin hits the mattress, score one point and start a new Robin to 
fall. 

- Create a label showing the current score. 
- If a Robin falls below the bottom of the screen, stop the game. 
- When the applet loads, the game should not start immediately. The game 

will start on a mouse click. 
 
While I have made specific suggestions about code design above, make sure that, as 
much as possible, ship-related code goes in the MotherShip class and mattress-related 
code goes in the Mattress class. 
 
Extra challenge: Send each Robin in a randomly-chosen direction. After every Robin 
starts its fall, choose a random x-velocity. The falling Robin moves at that velocity 
(which could be to the right or to the left) and bounces off the walls. As time passes, 
increase the range of possible velocities. For example, my version starts off with a 
random velocity between -1 and 1 and increases those limits by .3 with each Robin. So, 
the second Robin's velocity is between -1.3 and 1.3, and so on. Robin's y-velocity always 
stays the same. 
 
When you have completed coding this project, make a reflections.txt file (following the 
instructions on the Warmup assignment), answering these questions: 
 

1. Did you complete all parts of the assignment? 
2. If not, which parts were you unable to complete and why? 
3. How long did this assignment take you? 
4. What was the most challenging part? 
5. Do you have any other questions or experiences to share? 

 
Export your project (following the instructions in the Warmup assignment) and post on 
Gradescope. 


