
 1

CMSC 113: Computer Science I
Review Questions for Exam #1

During the actual exam, you will have access to whatever printed resources you like, but no
electronic resources of any sort.

Part I. Each of the following programs draws a rectangle. For each problem, say where will its
upper-left corner be with respect to the app window's upper-left hand corner (i.e., global
coordinates). You may assume all the programs are correct and indeed draw a rectangle, and that
all the necessary import statements have been included (but are left out of the test questions).

1. public class Problem1 extends GraphicsProgram
{
 @Override
 public void run()
 {
 GRect rect = new GRect(70, 80, 90, 100);
 add(rect);
 }
}

2. public class Problem2 extends GraphicsProgram
{
 @Override
 public void run()
 {
 GRect rect = new GRect(90, 60, 10, 10);
 rect.move(20, 20);
 add(rect);
 }
}

 2

3. public class Problem3 extends GraphicsProgram

{
 @Override
 public void run()
 {
 GRect rect = new GRect(30, 50, 10, 10);
 rect.setLocation(70, 100);
 add(rect);
 }
}

4. public class Problem4 extends GraphicsProgram
{
 @Override
 public void run()
 {
 GRect rect = new GRect(20, 40, 10, 10);
 GOval oval = new GOval(80, 100, 10, 10);
 rect.setLocation(oval.getX(), rect.getY());
 add(rect);
 }
}

5. public class Problem5 extends GraphicsProgram
{
 @Override
 public void run()
 {
 Problem5Object obj = new Problem5Object();
 obj.setLocation(30, 60);
 add(obj);
 }
}

public class Problem5Object extends GCompound
{
 public Problem5Object()
 {
 GRect rect = new GRect(0, 0, 10, 10);
 add(rect);
 }
}

 3

Part II. Code reading

6. Consider the following program and answer the questions below it.

public class ShowHouse extends GraphicsProgram
{
 private House house;
 private int numClicks;
 private GLabel clickLabel;

 @Override
 public void run()
 {
 house = new House();
 house.setLocation(100, 100);
 add(house);

 clickLabel = new GLabel("Clicks: 0", 5, 195);
 add(clickLabel);

 addMouseListeners();
 }

 @Override
 public void mousePressed(MouseEvent e)
 {
 house.setLocation(e.getX(), e.getY());
 numClicks = numClicks + 1;
 clickLabel.setLabel("Clicks: " + numClicks);
 }
}

public class House extends GCompound
{
 public House()
 {
 GRect frame = new GRect(-20, -40, 40, 40);
 add(frame);
 GLine line1 = new GLine(-30, -30, 0, -60);
 add(line1);
 GLine line2 = new GLine(0, -60, 30, -30);
 add(line2);
 }
}

 4

a. What are the classes declared in this program?

b. How many fields are declared in the main program class?

c. What are their names?

d. How many fields are declared in the compound object?

e. What are their names?

f. How many methods are declared in the compound object?

g. What are their names?

h. Will this program react to the mouse? the keyboard? the passage of time?

i. Draw a picture of what this program will look like when it starts up:

 5

Part III. What does this program do?

7. Write out what the following programs print.

a. public static void main(String[] args)
{
 int i = 2;
 while(i < 15)
 {
 System.out.println(i);
 i = i + (i – 1);

}
System.out.println(i);

}

b. public static void main(String[] args)

{
 int num = 384950;
 while(num > 0)
 {
 System.out.println(num % 10);
 num = num / 10;

}
}

 6

 7

Part IV. Writing programs.

8. Write a console program that asks the user for a number and then prints out the number
of divisors (less than the number itself) it has. So, if the user enters 12, the program
would output 5, because 12 is divisible by 1, 2, 3, 4, and 6.

Along with a required console program, you will have to write two graphics programs. You will
have a choice of which programs to write. Here are a few possible programs:

9. Write a graphics program simulating a car crash. Draw the car as a rectangle, moving
into the applet from the left side of the screen. Draw a wall as a line going down the
center of the applet. When the front end of the car hits the wall (when the right side of
the rectangle touches the line), the car immediately comes to a stop and does not move
again.

10. Write a graphics program to countdown to takeoff. The program starts with the text

"Count: 5" displayed in the center. After every click, the count goes down. When the
count reaches 0, the words "Blast off!" appear below the countdown. Further clicks do
not affect the applet in any way.

11. Write an applet with a 100x100 box in the center. If the user clicks in the left half of this

box, it grows bigger. If the user clicks in the right half of this box, it shrinks smaller.
There is no limit to how big or small the box can get. The box must stay centered as it
changes size.

12. Write a program showing a rocket taking off. Represent the rocket as an upward-

pointing triangle (made of three lines – don’t worry about polygons!) starting at the
bottom of the applet. When you click once, the rocket starts moving up. It should not get
faster every time you click.

