Algorithms

• Algorithms are a precise statement of how to solve a problem
 • NOT a program
 • NOT written using a PL

• Write in a way that is easy for you
• Use a pencil
 • draw circles and arrows
• Be very precise
/*
 * My hello World program
 * Created: Aug 14, 2023
 * @author gtowell
 *
 */

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World");
 } // end main
} // end HelloWorld
Variables

• A thing in a program that holds a value

• Declaration -- the name and type of the variable
 • String aString;

• Variables must be "declared" before they can be used
 • declaration occurs once
 • double d = 5.0; // declare and assign on same line

• Assignment
 • aString = "aaa";
 • assignment my occur many times

• Read
 • Use the value that was initialized / assigned
 • variables must be initialized (assigned) before they can be read
Data Types

• Integer aka int
 • int base = 55; //32 bits 00000000 00000000 00000000 00110111

• String -- a sequence of chars
 • String base = "55"; //16 bits 00110101 00110101

• double base = 55.0; //64 bits
 10000000001001011100

• boolean b = true; // or false // 1 bit
Casting

easy / standard converting one type to another

• Often Java will convert types for you
• Sometimes, you need to tell Java exactly what you want
 • this is called "Casting"
• For example, the code at right fails to compile with the message

```
Casting1.java:6: error: incompatible types: possible lossy conversion from double to int
int resultInt = aDouble * anInt;
```

• To fix, cast
 • change line to (int)(aDouble*anInt);
Harder conversions

- String to int
- String to double
- degrees to radians
- number, power to number
if

• if (boolean) { do something }
• else { do something else }

• Example:
 • Suppose Java did not have the modulus (remainder) operator, %
 • Given two numbers from the command line, print true if the remainder of the first with respect to the second is 0. Otherwise print the remainder.
If

No modulus operator

```java
public static void main(String[] args) {
    int num = Integer.parseInt(args[0]);
    int den = Integer.parseInt(args[1]);
    int div = num / den;  // this will round down so 5/2 = 2
    int mul = div * den;
    int modu = num - mul;
    if (modu == 0) {
        System.out.println("true");
    } else {
        System.out.println("The remainder of \" + num + "+ \"/\" + den + " is \" + modu);
    }
}
```
Java Random number generator

• Random double in range 0.0 .. <1.0
 • double d = Math.random()

• Random double in range 0.0 .. <100.0
 • double d = Math.random()*100

• Random double in range lo .. < hi
 • double d = (Math.random()*(hi - lo)) + lo //

• Random integer in range lo .. < hi
 • int i = (int)((Math.random()*(hi - lo)) + lo)
While loops

while (boolean is true) {
 do something
}

Count the number of times must draw a random number in the range 20-100 to get a number greater than 90
public static void main(String[] args) {
 int count = 0;
 int drawn = 0;
 while (drawn < 90) {
 count++;
 drawn = (int) (Math.random() * (100 - 20 + 1) + 20);
 // to get a number in the range 20–100 including both 20 and 100 you need 81 possibilities,
 // not just 80
 }
 System.out.println(count);
}
For-loops are preferred when you have the init/condition/body/update pattern, and/or when you know how many times you want the thing to run.

Usually update is increment by 1

```
for (int i=0; i<100; i++)
```

BUT update can be decrement by 1

```
for (int i=100; i>=0; i--)
```

OR any amount

```
for (int i=0; i<100; i += 7)
```

OR even multiplication/division

```
for (int i=1; i<1000; i=i*2)
```
Fizz Buzz:
print each of the numbers in 0 .. 100 except
if num evenly divisible by 3 print "fizz"
if num evenly divisible by 5 print "buzz"
is both 3 and 5 print "fizz buzz"
For loop

Fizz Buzz

```java
public static void main(String[] args) {
    for (int i = 0; i <= 100; i++) {
        if (i % 3 == 0 && i % 5 == 0) {
            System.out.println("Fizz Buzz");
        } else if (i % 3 == 0) {
            System.out.println("Fizz");
        } else if (i % 5 == 0) {
            System.out.println("Buzz");
        } else {
            System.out.println(i);
        }
    }
}
```
Loops in loops

• First, given a number, x, is x prime?

• Find/print all primes less than 100?
 • This will require nested loops!
public static void main(String[] args) {
 Integer num = Integer.parseInt(args[0]);
 boolean isPrime = true; // start by assuming the number is prime
 for (int i = 2; i < num; i++) {
 if (num % i == 0) {
 isPrime = false;
 }
 }
 if (isPrime) {
 System.out.println(num + " is prime");
 } else {
 System.out.println(num + " is NOT prime");
 }
}
Primes to 100
using much of isPrime!
Actually this finds primes up to a user supplied number

```java
public static void main(String[] args) {
    Integer num = Integer.parseInt(args[0]);
    for (int j = 2; j < num; j++) {
        boolean isPrime = true; // start by assuming the number is prime
        for (int i = 2; i < j; i++) {
            if (j % i == 0) {
                isPrime = false;
            }
        }
        if (isPrime) {
            System.out.println(j);
        }
    }
}
```