
Nov 27

More with Classes
Banking

Penn Percentage Project Survey

https://qfreeaccountssjc1.az1.qualtrics.com/jfe/form/SV_eJrorLliFIM9eaW

Charity5
public class Charity5 {
 private String name;
 private int donationTarget;
 private int donationsReceived;

 public Charity5(String nm, int dt, int dr) {
 this.name = nm;
 this.donationTarget = dt;
 this.donationsReceived = dr;
 }

 public String getName() {
 return name;
 }

 public int getDonationTarget() {
 return donationTarget;
 }

 public int getDonationsReceived() {
 return donationsReceived;
 }

 public int adjustDonationsReceived(int dr) {
 donationsReceived += dr;
 return donationsReceived;
 }

 public double percentageOfGoal() {
 return (double) (donationsReceived * 100) / donationTarget;
 }

 public String toString() {
 return name + " has a donation target of " + donationTarget + ". It has received " + donationsReceived
 + " which is " + percentageOfGoal() + " of its goal.";
 }
}

ThIs class does NOT have a main function!!!

% javac Charity5.java
% java Charity5
Error: Main method not found in class Charity5,
please define the main method as:
 public static void main(String[] args)
or a JavaFX application class must extend
javafx.application.Application

User5

• User5 does have a main, so it can be "run".

• More interesting, when I compile User5, Charity5 will also get
compiled

• javac looks at all the classes used by the thing you are compiling,
and any need compiling, javac will do so

• How does javac determine "need compiling"

public class User5 {
 public static void main(String[] args) {
 Charity5 charity = new Charity5("ICF", 100000, 5000);
 System.out.println(charity.toString());
 }
}

Path / Classpath

• How does java / javac find classes

• the "classpath" !

• a variation on the Unix path! (UNIX, Unix or unix??)

• according to Wikipedia "Unix was the original formatting, but the usage of UNIX remains
widespread"

• also UNIX is trademarked and according to the owners is an adjective

• the Unix 'which' command

• By default, classpath is

• current directory

• classes in Java distribution

Activity

• Create 2 instances of Charity5.

• put them in two variables in a main function

• Determine which instance is (percentage-wise) further from its goal

• Use the toString method to print information about that charity

• Repeat, but this time make 5 instances of Charity5

• put them into an array

• Find the instance that is the furthest from its goal

• Use the toString method to print information about that charity

Banks and Bank Accounts

• Bank

• Data

• accounts

• ...

• Activities

• Create Account

•

• Bank Account

• Data

• Account Number

• ...

• Activities

• Deposit

• ...

Bank Account

public class BankAccount {
 private final String accountNumber;
 private String name;
 private double balance;

 public BankAccount(String actNo, String name, double startDep) {
 this.accountNumber = actNo;
 this.name = name;
 this.balance = startDep;
 }

 public void changeName(String newName) {
 this.name = newName;
 }

 public double getBalance() {
 return balance;
 }

 public String getName() {
 return name;
 }

 public String toString() {
 return accountNumber + " " + name + " balance:" + balance;
 }

}

// alternately, it would make sense to return new balance
 public boolean deposit(double dep) {
 if (dep < 0) {
 System.out.println("Cannot make a negative deposit");
 return false;
 }
 if (dep > 10000) {
 System.out.println("No. Would have to report this to the Treasury");
 return false;
 }
 balance += dep;
 return true;
 }

 public boolean withdrawal(double withdrawal) {
 if (withdrawal < 0) {
 System.out.println("Cannot make a negative withdrawal");
 return false;
 }
 if ((balance - withdrawal) < 0) {
 System.out.println("Not enough money");
 return false;
 }
 balance -= withdrawal;
 return true;
 }

Bank
public class Bank {
 BankAccount[] accounts = null;
 int accountNumber = 2;
 int activeAccounts;

 public Bank(int size) {
 accounts = new BankAccount[size];
 activeAccounts = 0;
 }

 private String nextAccountNumber() {
 accountNumber *= 1.5;
 String nextNum = "" + accountNumber;
 while (nextNum.length() < 9) {
 nextNum = " " + nextNum;
 }
 return nextNum;
 }

 public BankAccount makeAccount(String name, double initialDeposit) {
 BankAccount ba = new BankAccount(name, nextAccountNumber(), initialDeposit);
 accounts[activeAccounts] = ba;
 activeAccounts++;
 return ba;
 }

 public void listAccounts() {
 for (int i = 0; i < activeAccounts; i++) {
 System.out.println(accounts[i]);
 }
 }
}

User

• make 3 accounts, each with a starting balance of $100

• 10 times

• randomly pick an account

• randomly pick an account in $10-20

• randomly pick deposit/withdrawal

• Print the accounts

