
scope, loops, ++, return

Loops
Sep 25

Powers of N

• Write a program that takes two parameter from the command line, both positive
integers.

• call the first base

• call the second maxx

• Find the smallest power of base that exceeds max.

• Print the number, the power, and base raised to that power.

PowerIf
public class PowerIf {

 public static void main(String[] args) {

 int base = Integer.parseInt(args[0]);

 int maxx = Integer.parseInt(args[1]);

 int power = 1;

 int basePower = base;

 if (basePower > maxx) {

 System.out.println(base + " " + maxx + " power: " + power + " basePower: " + basePower);

 } else {

 power++;

 basePower *= base;

 if (basePower > maxx) {

 System.out.println(base + " " + maxx + " power: " + power + " basePower: " + basePower);

 } else {

 power++;

 basePower *= base;

 if (basePower > maxx) {

 System.out.println(base + " " + maxx + " power: " + power + " basePower: " + basePower);

 } else {

 power++;

 basePower *= base;

 if (basePower > maxx) {

 System.out.println(base + " " + maxx + " power: " + power + " basePower: " +
basePower);

 } else {

 power++;

 basePower *= base;

 }

 }

 }

 }

 }

}

PowerIf Problems

• Did not handle case where numbers are negative

• What if the target requires greater that base raised to the fourth power?

• In this program, print NOTHING!

• Improve?

• Improve using "return"

• allows the program to exit early

• better in terms of fewer {} and no "else"

Loops

• Loops allow a program to execute repeated statements without the programmer
having to write them

• Even better, execute statements and unbounded number of times!!!

• Problem, stopping the loop

• before you write a loop, you must know how it is going to end

• "infinite loops"

While loop

• Idea,

• execute the "body" until the condition is false

• int i=1; 
while (i<5) { 
 i++; 
 System.out.println(i); 
}

• An infinite loop?

while	(CONDITION)	{

				BODY

}

Powers of N
using While

public class PowerWhile {

 public static void main(String[] args) {

 int base = Integer.parseInt(args[0]);

 int maxx = Integer.parseInt(args[1]);

 int power = 1;

 int basePower = base;

 while (basePower < maxx) {

 power++;

 basePower *= base;

 }

 System.out.println(base + " " + maxx + " power: " + power + " basePower: " + basePower);

 }

}

Sum Power

• Calculate SUM(i=1 to n)(k^i)

• For instance if n = 3 and k = 5, sum = 5^1 + 5^2 + 5^3

• Algorithm

• Program

Randomness

• Lots of times it is useful to get a random number.

• Computers are really bad at this

• Why?

• Lots of work at making computers give numbers that are indistinguishable from random

• Tippett A Million Random Digits with 100,000 Normal Deviates.

• "pseudo-random"

• Java provides

https://en.wikipedia.org/wiki/A_Million_Random_Digits_with_100,000_Normal_Deviates

Java Random number generator

• Random double in range 0.0 .. <1.0

• double d = Math.random()

• Random doubl1 in range 0.0 .. <100.0

• double d = Math.random()*100

• Random double in range -50 .. <50

• double d = (Math.random()*50)-50

• Random integer in range 0 .. <100

• int i = (int)(Math.random()*100)

Whiteboard

• In the casino game of craps (which uses two standard 6-sided dice), everyone on the
"pass line" looses when a 2, 3, or 12 is rolled. This is referred to as "crapping out"

• Write a program that

• Calculates the number of times a pair of dice must be rolled before crapping out.

• Note: each time the program runs you would might get a different answer

Crapping out

