

Ques%on	#2	
Fill	in	the	blanks	in	the	averageOfMaxValues	method	so	that	it	will	use	the	findMax	and	
findAverage	methods	to	calculate	the	average	of	the	maximum	values	in	each	array	in	A;	note	
that	A	is	a	two-dimensional	array,	i.e.	an	array	of	arrays.	

For	instance,	if	A	=	{	{	3,	5,	6	}	,	{	2,	8,	1,	4	}	,	{	9,	3,	4,	5	}	},	then:	
• the	max	of	A[0]	is	6	
• the	max	of	A[1]	is	8	
• the	max	of	A[2]	is	9	
• their	average	is	(6	+	8	+	9)	/	3	=	7.667.	

 public static int findMax(int[] A) {
 if (A.length == 0) return 0;
 int max = A[0];
 for (int a : A) {
 if (a > max) max = a;
 }
 return max;
 }

 public static double findAverage(int[] A) {
 int sum = 0;
 for (int a : A) sum += a;
 return ((double)sum) / A.length;
 }

 public static double averageOfMaxValues(int[][] arr2d) {
 // this array should hold the max value of each array in arr2d
1: int[] maxValues = new int[arr2d.length];
2: for (int i = 0; i < A.length; i++) {
3: maxValues[i] = findMax(arr2d[i]);
4: }
5: return findAverage(maxValues);
 }

Ques%on	#5		
Write	a	Java	method	stddev()	that	calculates	the	standard	deviaTon	of	an	array	a.	The	standard	
deviaTon	is	defined	as	follows:	

	

Where	 	is	the	average	of	(.	

Implement	the	stddev()	method	so	that	it	uses	the	average()	method	that	is	defined	below.		

σ = ((a0 − μ)2 + (a1 − μ)2 + … + (an−1 − μ)2)/(n − 1)

μ a0, …an−1)

public	static	double	average	(double[]	arr)	{		
			double	sum	=	0;	
			for	(int	i=0;	i<arr.length;	i++)	{	
								sum	+=	arr[i];	
			}	
			return	sum	/	arr.length;	
}	

public	static	double	stddev	(double[]	aarr)	{	

			double	average	=	average(aarr);	

			double	sum	=	0;	
			for	(int	i=0;	i<	aarr.length;	i++)	{	
								sum	+=	Math.pow(aarr[i]	–	average,	2);	
			}	

			return	Math.sqrt(sum	/	(aarr.length	–	1));	
}	

Ques%on	#6	
The	following	code	is	aYempTng	to	use	recursion	to	compute	the	summaTon	1+2+3+…n.	

Implement	the	sumHelper()	method	so	that	it	takes	two	arguments	--	n	and	the	accumulaTng	sum	--
and	is	defined	as	follows:	

• sumHelper(0,	x)	=	x	
• sumHelper(n,	x)	=	sumHelper(n-1,	x+n)	

	

public	static	int	sum	(int	n)	{		
			return	sumHelper(n,	0);	
}	

//	Implement	the	sumHelper	method	here	

public	static	int	sumHelper(int	n,	int	x)	{	

			if	(n	==	0)	{	
						return	x;	
			}	
			else	{	
						return	sumHelper(n	–	1,	x	+	n);	
			}	
}	

Ques%on	#7	
Write	a	complete	Java	program	named	Print	that	takes	2	arguments	from	the	command	line,	call	those	
two	arguments	“N”	and	“text”,	and	then	prints	text	to	standard-out	N	Tmes.	

For	instance,	if	the	command	line	contains	the	following:	

the	the	program	should	produce	the	output:	
dog
dog
dog

And	if	the	file	words.txt	contains	the	following:	

Then	the	program	should	produce	the	output:	
cat
cat
cat
cat

Your	program	can	assume	that	there	are	at	least	two	command	line	arguments	and	that	the	the	first	
command		line	argument	can	be	converted	to	an	int.	The	program	should	not	print	anything	if	the	int	is	
zero	or	negaTve.	

java	Print	3	dog

java	Print	4	cat

public	class	Print	{	

			public	static	void	main(String[]	args)	{	

						int	N	=	Integer.parseInt(args[0]);	
					String	text	=	args[1];	
					for	(int	i	=	0;	i	<	N;	i++)	{	
											System.out.println(text);	
						}	
			}	
}	

Ques%on	#8	
Assume	that	the	following	code	compiles:	
double m = StdIn.readDouble();
int x = (int)fun(m * 2);

Assuming	that	the	fun	method	is	defined	in	the	same	class	as	the	code	above,	which	of	the	following	are	
possible	legal	implementaTons	of	the	fun	method?	Select	all	that	apply:	

The	correct	answers	are	B	and	D.	

A.	
public static void fun(double a) {

System.out.println(“fun?” + a);
}
This	is	not	a	legal	implementaTon	because	this	method	returns	void;	however,	the	code	at	the	top	of	the	
page	treats	fun	as	if	it	has	a	non-void	return	value.	

B.	
public static double fun(double a) {

return a * a;
}
This	is	a	legal	implementaTon.	The	argument	that	is	passed	(m*2)	is	a	double,	as	is	the	parameter	a.	And	
it	is	possible	for	this	method	to	return	a	double	and	have	the	caller	cast	it	to	an	int.	

C.	
public static int fun(int a) {

return -1 * a;
}
This	is	not	a	legal	implementaTon	because	the	argument	that	is	passed	(m*2)	is	a	double,	which	we	
would	not	be	able	to	store	in	the	int	parameter	without	casTng.	

D.	
public static int fun(double a) {

return (int)Math.round(a);
}
This	is	a	legal	implementaTon.	The	argument	that	is	passed	(m*2)	is	a	double,	as	is	the	parameter	a.	And	
even	though	the	calling	code	casts	the	return	value	to	an	int,	it	is	okay	to	cast	something	to	an	int	even	if	
it’s	already	an	int!	

