This is Exam #1 in CSMC B113 from Fall 2018.

Students had 80 minutes to complete the exam. Note that this was a closed-book, closed-notes exam.

This is being provided purely as an example of a past exam, and is not necessarily indicative of the length, difficulty, format, or set of topics covered on the exam that will be given in Fall 2020.
Question 1 (15 points)

Part 1. Basic Java Knowledge. Write Java command(s) to do the following:

(1) Define a floating point variable named, \(x \) ___________________________________

(2) Set the variable \(x \) (from above) to 42.3 ___________________________________

(3) Increment the value in \(x \) by 5.9 ___________________________________

(4) Compute the square root of \(x \) and place it in \(x \) ___________________________________

(5) Convert the value of \(x \) to an integer and save the result in an integer variable \(y \): ___________________________________

(6) Convert \(\theta \) (type double) from degrees to radians ___________________________________

(7) Define an array named \(a \) of type double. ___________________________________

(8) Create the array \(a \) from (7) above to have 100 elements.

(9) Set the element at index 42 in \(a \) (above) to the value of \(\pi \). _______________________

(10) Set the element at index 39 in \(a \) (above) to a random number between [0..1) _______________________

Note that there were also five additional questions related to bash commands; those have been removed from this document since bash commands will not be on the Fall 2020 exam.
Question 2 (10 points) Write Java commands to exchange the contents of two integer variables \(x \) and \(y \).

\[
\text{int } x = \ldots, \text{ int } y = \ldots;
\]

Question 3 (10 points) Write Java commands to create an array named \(x \) of \(N \) elements and fill it up with random integers between \([10..10000]\) (inclusive).

Question 4 (10 points) \(x \) is the same array as in Question 3 above. Study carefully the Java commands shown below:

\[
\text{int } r = x[0];
\text{for (int } i=1; i < x.\text{length}; i++) \{ \\
\text{ if (} x[i] < r \text{) } \{ \\
\text{ r = } x[i]; \\
\text{ } \}
\}
\]

(a) How many times will the for-loop be executed? _____________

(b) Describe, in one sentence, what the set of commands is computing.
Question 5 (10 points) Given three integer variables, \(x, y, z \) (assume already defined) write Java commands to assign to a variable \(\text{max} \) (you have to define it) the largest value in \(x, y, \) and \(z \).

Question 6 (10 points) Here is an algorithm for computing the GCD of two numbers \(a \) and \(b \):

while \(a \neq b \)
 if \(a > b \)
 \(a \leftarrow a - b \)
 else
 \(b \leftarrow b - a \)

Assuming \(a \), and \(b \) are already defined (as integers), write Java commands to code the above algorithm.
Question 7 (10 points)
What will be the exact output when the following Java statements are executed:

```java
int n = 5;

for (int i=0; i < n; i++) {
    for (int j=i+1; j < n; j++) {
        System.out.println(i + " " + j + " " + (i+j));
    }
}
```
Question 8 (10 points)
Write a complete Java program that displays all odd powers of 3 between 0 and 20 (i.e. 3^i where $0 < i \leq 20$ and i is odd). Output a table (see box) showing the power 3 is being raised to, as well as the result, on each line. You may use a TAB character (‘\t’) to separate and align the two numbers on each line.

Example Output

<table>
<thead>
<tr>
<th>i</th>
<th>3^i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>243</td>
</tr>
<tr>
<td>7</td>
<td>2187</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Question 9 (15 points) Write a **complete Java program** called **LuckySeven** that simulates the tossing of two six-sided dice and computes the estimated probability of obtaining a sum of 7 on each roll. Your program should input N, the number of trials as an integer from the command line. Here is a sample output:

```
$ java LuckySeven 10000
The probability of obtaining a 7 in 10000 trials is 17%
```